
© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL Slide      1

1224 CPL
Embedded C Programming 

Introduction to The C 
Programming Language



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  21224 CPL

Agenda
History of C
Fundamentals of C

Data Types
Variables, Constants and Arrays
Keywords
Functions (Overview)
Declarations
printf() Library Function (Special use in this 
class)



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  31224 CPL

Agenda
Operators and Conditional Statements 
Statements and Expressions
Control Statements: Making Decisions
Functions
Program Structure
Arrays and Strings
Pointers and Strings
Structures and Unions
Additional Features of C



© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL Slide      4

Section 1.0
Using C in an Embedded 

Environment



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  51224 CPL

Just the Facts
C was developed in 1974 in order to write 
the UNIX operating system
C is more "low level" than other high level 
languages (good for MCU programming)
C is supported by compilers for a wide 
variety of MCU architectures
C can do almost anything assembly 
language can do
C is usually easier and faster for writing 
code than assembly language



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  61224 CPL

Busting the Myths
The truth shall set you free…

C is not as portable between architectures 
or compilers as everyone claims

ANSI language features ARE portable
Processor-specific libraries are NOT portable
Processor-specific code (peripherals, I/O, 
interrupts, special features) are NOT portable

C is NOT as efficient as assembly
A good assembly programmer can usually do 
better than the compiler, no matter what the 
optimization level – C WILL use more memory



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  71224 CPL

Busting the Myths
The truth shall set you free…

There is NO SUCH THING as self-
documenting code – despite what many C 
proponents will tell you

C makes it possible to write very confusing 
code – just search the net for obfuscated C 
code contests… (www.ioccc.org)
Not every line needs to be commented, but 
most blocks of code should be

Because of many shortcuts available, C is 
not always friendly to new users – hence 
the need for comments!



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  81224 CPL

.a Linker

Development Tools Data Flow

.map

C Compiler

Archiver
(Librarian)

MPLAB® IDE
Debug Tool

C Source Files

Assembly Source Files

Assembly Source Files

Object 
Files

Object File Libraries 
(Archives)

Linker Script
COFF
Debug File

Executable

Memory Map

Compiler 
Driver 
Program

Assembler
(.asm or .s)

(.lib or .a)

(.lkr or .gld)

(.asm or .s)



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  91224 CPL

Development Tools Data Flow

C Compiler

Compiler

C Source File C Header FilePreprocessor

.sAssembly Source File

.h.c



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  101224 CPL

C Runtime Environment
C Compiler sets up a runtime environment

Allocates space for stack
Initialize stack pointer
Allocates space for heap
Copies values from Flash/ROM to variables in 
RAM that were declared with initial values
Clear uninitialized RAM
Disable all interrupts
Call main() function (where your code starts)



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  111224 CPL

C Runtime Environment
Runtime environment setup code is 
automatically linked into application by 
most PIC® MCU compiler suites
Usually comes from either:

crt0.s / crt0.o (crt = C RunTime)
startup.asm / startup.o

User modifiable if absolutely necessary
Details will be covered in compiler specific 
classes



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  121224 CPL

Example

Fundamentals of C
A Simple C Program

#include <stdio.h>

#define PI 3.14159

int main(void)
{

float radius, area;

//Calculate area of circle
radius = 12.0;
area = PI * radius * radius;
printf("Area = %f", area);

}

Header File

Function

Variable Declarations

Constant Declaration
(Text Substitution Macro)

Comment

Preprocessor 
Directives



© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL Slide      13

Section 1.1
Comments



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  141224 CPL

Definition

Comments

Two kinds of comments may be used:
Block Comment
/* This is a comment */

Single Line Comment
// This is also a comment

CommentsComments are used to document a program's functionality are used to document a program's functionality 
and to explain what a particular block or line of code does.  and to explain what a particular block or line of code does.  
Comments are ignored by the compiler, so you can type Comments are ignored by the compiler, so you can type 
anything you want into them.anything you want into them.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  151224 CPL

Comments
Using Block Comments

Block comments:
Begin with /*/* and end with */*/
May span multiple lines

/********************************************************/********************************************************
* Program: * Program: hello.chello.c
* Author:  R. Ostapiuk* Author:  R. Ostapiuk
********************************************************/********************************************************/
#include#include <<stdio.hstdio.h>>

/* Function: main() *//* Function: main() */
intint mainmain((voidvoid))
{{
printfprintf((““HelloHello, world!, world!\\nn””); ); /* Display /* Display ““Hello, world!Hello, world!”” */*/

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  161224 CPL

Comments
Using Single Line Comments

Single line comments:
Begin with //// and run to the end of the line
May not span multiple lines

//=======================================================//=======================================================
// Program: // Program: hello.chello.c
// Author:  R. Ostapiuk// Author:  R. Ostapiuk
//=======================================================//=======================================================
#include#include <<stdio.hstdio.h>>

// Function: main() // Function: main() 
intint mainmain((voidvoid))
{{
printfprintf((““HelloHello, world!, world!\\nn””); ); // Display // Display ““Hello, world!Hello, world!””

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  171224 CPL

Comments
Nesting Comments

Block comments may not be nested within 
other delimited comments
Single line comments may be nested 

/*/*
code herecode here // Comment within a comment// Comment within a comment

*/*/

/* /* 
code here     code here     /* Comment within a comment *//* Comment within a comment */
code herecode here /* Comment within a/* Comment within a…… oops!  */oops!  */

*/*/

Example: Single line comment within a delimited comment.Example: Single line comment within a delimited comment.

Example: Delimited comment within a delimited comment.Example: Delimited comment within a delimited comment.
Delimiters donDelimiters don’’t match up as intended!t match up as intended!

Dangling delimiter causes compile errorDangling delimiter causes compile error



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  181224 CPL

Comments
Best Practices

/********************************************************/********************************************************
* Program: * Program: hello.chello.c
* Author:  R. Ostapiuk* Author:  R. Ostapiuk
********************************************************/********************************************************/
#include#include <<stdio.hstdio.h>>

/********************************************************/********************************************************
* Function: main() * Function: main() 
********************************************************/********************************************************/
intint mainmain((voidvoid))
{{
/*/*
intint i;i; // Loop count variable// Loop count variable
char *p;                   // Pointer to text stringchar *p;                   // Pointer to text string
*/*/

printfprintf((““HelloHello, world!, world!\\nn””); ); // Display // Display ““Hello, world!Hello, world!””
}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL Slide      19

Section 1.2
Variables, Identifiers, and 

Data Types



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  201224 CPL

Example

Variables and Data Types
A Simple C Program

Variable Declarations
Data 

Types

Variables 
in use

#include <stdio.h>

#define PI 3.14159

int main(void)
{

float radius, area;

//Calculate area of circle
radius = 12.0;
area = PI * radius * radius;
printf("Area = %f", area);

}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  211224 CPL

Variables

A variable may be thought of as a container that 
can hold data used in a program

Definition

A A variablevariable is a name that represents one or more is a name that represents one or more 
memory locations used to hold program data.memory locations used to hold program data.

int myVariable;

myVariable = 5;
myVariable

55



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  221224 CPL

4141

Variables

5.745323703731755.74532370373175
× 10-44× 10-44

015 Data Memory (RAM)

int warp_factor;

float length;

char first_letter; ‘A’

Variables are names for 
storage locations in 
memory



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  231224 CPL

float length;

char first_letter;

int warp_factor; 4141

Variables

5.745323703731755.74532370373175
× 10-44× 10-44

015 Data Memory (RAM)

‘A’

Variable declarations 
consist of a unique 
identifier (name)…



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  241224 CPL

float length;

char first_letter;

int warp_factor; 4141

Variables

5.745323703731755.74532370373175
× 10-44× 10-44

015 Data Memory (RAM)

‘A’

…and a data type
Determines size
Determines how values 
are interpreted



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  251224 CPL

Identifiers

Names given to program elements 
such as:

Variables
Functions
Arrays
Other elements



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  261224 CPL

Identifiers
Valid characters in identifiers:

Case sensitive!
Only first 31 characters significant*

I d e n t i f i e r
First Character

‘_’ (underscore)
‘A’ to ‘Z’
‘a’ to ‘z’

Remaining Characters
‘_’ (underscore)

‘A’ to ‘Z’
‘a’ to ‘z’
‘0’ to ‘9’



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  271224 CPL

ANSI C Keywords
auto
break
case
char
const
continue
default
do

double
else
enum
extern
float
for
goto
if

int
long
register
return
short
signed
sizeof
static

struct
switch
typedef
union
unsigned
void
volatile
while

Some compiler implementations may define 
additional keywords



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  281224 CPL

Data Types
Fundamental Types

The size of an int varies from compiler to compiler.
• MPLAB® C30 int is 16-bits
• MPLAB C18 int is 16-bits
• CCS PCB, PCM & PCH int is 8-bits
• Hi-Tech PICC int is 16-bits

Type Description Bits

charchar
intint
floatfloat
doubledouble

single charactersingle character
integerinteger
single precision floating point numbersingle precision floating point number
double precision floating point numberdouble precision floating point number

1616
88

3232
6464



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  291224 CPL

Data Type Qualifiers
Modified Integer Types

Qualifiers: unsigned, signed, short and long
Qualified Type Min Max Bits

unsigned char
char, signed char
unsigned short int
short int, signed short int
unsigned int
int, signed int
unsigned long int
long int, signed long int
unsigned long long int
long long int,
signed long long int

0
-128

0
-32768

0
-32768

0
-231

0

-231

255
127

65535
32767
65535
32767

231

231

232-1

264-1

8
8
16
16
16
16

32

64

32

64



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  301224 CPL

Data Type Qualifiers
Modified Floating Point Types

MPLAB® C30: (1)double is equivalent to long 
double if –fno-short-double is used

MPLAB C30 Uses the IEEE-754 Floating Point Format
MPLAB C18 Uses a modified IEEE-754 Format

Qualified Type Absolute Min Bits

floatfloat

doubledouble

long doublelong double

±± ~10~10--44.8544.85

±± ~10~10--44.8544.85

±± ~10~10--323.3323.3

3232

3232

6464

Absolute Max

±± ~10~1038.5338.53

±± ~10~1038.5338.53

±± ~10~10308.3308.3

(1)(1)



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  311224 CPL

Variables
How to Declare a Variable

A variable must be declared before it can be 
used
The compiler needs to know how much space to 
allocate and how the values should be handled

Syntax

typetype identifieridentifier11, identifier, identifier22,,……,,identifieridentifiernn;;

Example

intint xx,, yy,, zz;;
float float warpFactorwarpFactor;;
charchar text_buffer[10]text_buffer[10];;
unsignedunsigned indexindex;;



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  321224 CPL

Syntax

Variables
How to Declare a Variable

Variables may be declared in a few ways:

typetype identifieridentifier;;

typetype identifier identifier == InitialValueInitialValue;;

typetype identifieridentifier11,, identifieridentifier22,, identifieridentifier33;;

typetype identifieridentifier11 == ValueValue11,, identifieridentifier22 == ValueValue22;;

One declaration on a lineOne declaration on a line

One declaration on a line with an initial valueOne declaration on a line with an initial value

Multiple declarations of the same type on a lineMultiple declarations of the same type on a line

Multiple declarations of the same type on a line with initial vaMultiple declarations of the same type on a line with initial valueslues



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  331224 CPL

Examples

Variables
How to Declare a Variable

unsigned unsigned intint xx;;
unsignedunsigned y y == 1212;;
intint aa,, bb,, cc;;
long long intint myVarmyVar == 0x123456780x12345678;;
longlong zz;;
charchar first first == 'a''a',, secondsecond,, third third == 'c''c';;
floatfloat big_numberbig_number == 6.02e+236.02e+23;;

It is customary for variable names to be spelled using "camel case", where the initial 
letter is lower case.  If the name is made up of multiple words, all words after the first will 
start with an upper case letter (e.g. myLongVarName).



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  341224 CPL

Variables
How to Declare a Variable

Sometimes, variables (and other program 
elements) are declared in a separate file 
called a header file
Header file names customarily end in .h

Header files are associated
with a program through the
#include directive

MyProgram.h

MyProgram.c



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  351224 CPL

#include Directive
Three ways to use the #include directive:

Syntax

#include#include <<file.hfile.h>>
Look for file in the compiler search pathLook for file in the compiler search path
The compiler search path usually includes the compiler's directoThe compiler search path usually includes the compiler's directory ry 
and all of its subdirectories.and all of its subdirectories.
For example: C:For example: C:\\Program FilesProgram Files\\MicrochipMicrochip\\MPLAB C30MPLAB C30\\*.**.*

#include#include ““file.hfile.h””
Look for file in project directory onlyLook for file in project directory only

#include#include ““c:c:\\MyProjectMyProject\\file.hfile.h””
Use specific path to find include fileUse specific path to find include file



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  361224 CPL

main.h main.c

#include Directive
main.h Header File and main.c Source File

unsigned unsigned intint a;a;
unsigned unsigned intint b;b;
unsigned unsigned intint c;c;

#include #include <<main.hmain.h>>

intint main(main(voidvoid))
{{

a = a = 55;;
b = b = 22;;
c = c = a+ba+b;;

}}

The contents of The contents of main.hmain.h
are are effectivelyeffectively pasted into pasted into 
main.cmain.c starting at the starting at the 
#include#include directivedirective’’s lines line



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  371224 CPL

main.c

#include Directive
Equivalent main.c File

Equivalent Equivalent main.cmain.c file file 
without without #include#include

unsigned unsigned intint a;a;
unsigned unsigned intint b;b;
unsigned unsigned intint c;c;

intint main(main(voidvoid))
{{

a = a = 55;;
b = b = 22;;
c = c = a+ba+b;;

}}

After the preprocessor 
runs, this is how the 
compiler sees the 
main.c file
The contents of the 
header file aren’t 
actually copied to your 
main source file, but it 
will behave as if they 
were copied



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  381224 CPL

On the CDOn the CD
……\\101_ECP101_ECP\\Lab01Lab01\\Lab01.mcwLab01.mcw

Lab 01
Variables and Data Types



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  391224 CPL

Lab 01
Variables and Data Types

Open the project’s workspace:
On the lab PCOn the lab PC
C:C:\\RTCRTC\\101_ECP101_ECP\\Lab01Lab01\\Lab01.mcwLab01.mcw

11 Open MPLABOpen MPLAB®® IDE and select IDE and select Open Open 
WorkspaceWorkspace…… from the from the FileFile menu.menu.
Open the file listed above.Open the file listed above.

If you already have a project open in If you already have a project open in 
MPLAB IDE, close it by selecting MPLAB IDE, close it by selecting 
Close WorkspaceClose Workspace from the from the FileFile menu menu 
before opening a new one.before opening a new one.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  401224 CPL

Lab 01
Variables and Data Types

Compile and run the code:

22 Click on the Click on the Build AllBuild All button.button.

Compile (Build All)Compile (Build All) RunRun22 33

33 If no errors are reported,If no errors are reported,
click on the click on the RunRun button.button.

HaltHalt44

44 Click on the Click on the HaltHalt button.button.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  411224 CPL

Lab 01
Variables and Data Types

Expected Results (1):

55 The The SIM Uart1SIM Uart1 window should show the text that window should show the text that 
is output by the program, indicating the sizes of is output by the program, indicating the sizes of 
CC’’s data types in bytes.s data types in bytes.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  421224 CPL

Lab 01
Variables and Data Types

Expected Results (2):

66 The watch window should show the values which The watch window should show the values which 
are stored in the variables and make it easier to are stored in the variables and make it easier to 
visualize how much space each one requires in visualize how much space each one requires in 
data memory (RAM).data memory (RAM).



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  431224 CPL

0x08A80x08A80x08A90x08A9

Lab 01
Variables and Data Types

0000
0000
0000
0000
4242
0000
4242
0000

3232
3232
3232
3232
0000
4848
0000
4848
0000

0x08AA0x08AA

0x08AC0x08AC

0x08AE0x08AE

0x08B00x08B0

0x08B20x08B2

0x08B40x08B4

0x08B60x08B6

0x08B80x08B8

0x08BA0x08BA

0x08BC0x08BC

0x08AB0x08AB

0x08AD0x08AD

0x08AF0x08AF

0x08B10x08B1

0x08B30x08B3

0x08B50x08B5

0x08B70x08B7

0x08B90x08B9

0x08BB0x08BB

0x08BD0x08BD

charchar
short short intint
intint

long long intint

floatfloat

doubledouble

Variables in MemoryVariables in Memory

MultiMulti--byte values byte values 
stored in "Little stored in "Little 
EndianEndian" format " format 
on PICon PIC®®

microcontrollersmicrocontrollers

77
1616--bit Data Memorybit Data Memory



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  441224 CPL

Lab 01
Variables and Data Types

What does the code do?
STARTSTART

Declare ConstantDeclare Constant

Declare VariablesDeclare Variables

Initialize VariablesInitialize Variables

Print Variable
Sizes

Print Variable
Sizes

Loop
Forever
Loop

Forever

#define CONSTANT1  50

int intVariable;

intVariable = CONSTANT1;

printf("\nAn integer variable
requires %d bytes.",
sizeof(int));

while(1);

Example lines of code from the demo program:



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  451224 CPL

Lab 01
Conclusions

Variables must be declared before used
Variables must have a data type
Data type determines memory use
Most efficient data types:

int on 16-bit architectures*
char on 8-bit architectures

Don't use float/double unless you really 
need them



© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL Slide      46

Section 1.3
Literal Constants



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  471224 CPL

Example

unsigned unsigned intint aa;;
unsigned unsigned intint cc;;
#define#define bb 22

voidvoid mainmain((voidvoid))
{{

a a == 55;;
c c == a a ++ bb;;
printfprintf(("a=%d, b=%d, c=%d"a=%d, b=%d, c=%d\\n"n",, aa,, bb,, cc););

}}

A Simple C Program
Literal Constants

LiteralLiteral

LiteralLiteral



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  481224 CPL

Literal Constants
Definition

A A literalliteral or a or a literal constantliteral constant is a value, such as a is a value, such as a 
number, character or string, which may be assigned to a number, character or string, which may be assigned to a 
variable or a constant.  It may also be used directly as a variable or a constant.  It may also be used directly as a 
function parameter or an operand in an expression.function parameter or an operand in an expression.

Literals
Are "hard coded" values
May be numbers, characters or strings
May be represented in a number of formats 
(decimal, hexadecimal, binary, character, etc.)
Always represent the same value (5 always 
represents the quantity five)



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  491224 CPL

Constant vs. Literal
What's the difference?

Terms are used interchangeably in most 
programming literature
A literal is a constant, but a constant is not 
a literal
#define MAXINT 32767
const int MAXINT = 32767;

For purposes of this presentation:
Constants are labels that represent a literal
Literals are values, often assigned to symbolic 
constants and variables



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  501224 CPL

Literal Constants
Four basic types of literals:

Integer
Floating Point
Character
String

Integer and Floating Point are numeric 
type constants:

Commas and spaces are not allowed
Value cannot exceed type bounds
May be preceded by a minus sign



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  511224 CPL

Integer Literals
Decimal (Base 10)

Cannot start with 0 (except for 0 itself)
Cannot include a decimal point
Valid Decimal Integers:

Invalid Decimal Integers:

0 5 127 -1021 65535

32,767 25.0   1 024 0552



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  521224 CPL

Integer Literals
Hexadecimal (Base 16)

Must begin with 0x or 0X (that’s zero-x)
May include digits 0-9 and A-F / a-f
Valid Hexadecimal Integers:

Invalid Hexadecimal Integers:

0x 0x1 0x0A2B   0xBEEF

0x5.3 0EA12 0xEG 53h



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  531224 CPL

Integer Literals
Octal (Base 8)

Must begin with 0 (zero)
May include digits 0-7
Valid Octal Integers:

Invalid Octal Integers:
0 01 012   073125

05.3 0o12 080 53o

While Octal is still part of the ANSI specification, almost noWhile Octal is still part of the ANSI specification, almost no
one uses it anymore.  one uses it anymore.  



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  541224 CPL

Integer Literals
Binary (Base 2)

Must begin with 0b or 0B (that’s zero-b)
May include digits 0 and 1
Valid Binary Integers:

Invalid Binary Integers:

0b 0b1 0b0101001100001111

0b1.0 01100   0b12 10b

ANSI C does ANSI C does notnot specify a format for binary integer literals.specify a format for binary integer literals.
However, this notation is supported by most compilers.However, this notation is supported by most compilers.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  551224 CPL

Integer Literals
Qualifiers

Like variables, literals may be qualified
A suffix is used to specify the modifier

‘U’ or ‘u’ for unsigned: 25u
‘L’ or ‘l’ for long: 25L

Suffixes may be combined: 0xF5UL
Note: U must precede L

Numbers without a suffix are assumed to 
be signed and short
Not required by all compilers



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  561224 CPL

Floating Point Literals
Decimal (Base 10)

Like decimal integer literals, but 
decimal point is allowed
‘e’ notation is used to specify 
exponents (ke±n k 10±n)
Valid Floating Point Literals:

Invalid Floating Point Literals:
2.56e-5  10.4378  48e8  0.5

0x5Ae-2   02.41    F2.33



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  571224 CPL

Character Literals

Specified within single quotes (')

May include any single printable character
May include any single non-printable 
character using escape sequences (e.g. 
'\0' = NULL) (also called digraphs)
Valid Characters: 'a', 'T', '\n', '5', 
'@', ' ' (space)

Invalid Characters: 'me', '23', '''



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  581224 CPL

String Literals
Specified within double quotes (")
May include any printable or non-printable 
characters (using escape sequences)
Usually terminated by a null character ‘\0’
Valid Strings: "Microchip", "Hi\n", 
"PIC", "2500","rob@microchip.com",
"He said, \"Hi\""
Invalid Strings: "He said, "Hi""



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  591224 CPL

String Literals
Declarations

Strings are a special case of arrays
If declared without a dimension, the null 
character is automatically appended to the 
end of the string:

charchar colorcolor[[33] =] = "RED""RED";;
Is stored as:Is stored as:
colorcolor[[00] =] = 'R''R'
colorcolor[[11] =] = 'E''E'
colorcolor[[22] =] = 'D''D'

charchar colorcolor[] = [] = "RED""RED";;
Is stored as:Is stored as:
colorcolor[[00] =] = 'R''R'
colorcolor[[11] =] = 'E''E'
colorcolor[[22] =] = 'D''D'
colorcolor[[33] =] = ''\\0'0'

Example 1 Example 2



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  601224 CPL

String Literals
How to Include Special Characters in Strings

Escape Sequence Character ASCII Value

\\aa
\\bb
\\tt
\\nn
\\vv
\\ff
\\rr
\\""
\\''
\\??
\\\\
\\00

BELL (alert)BELL (alert)
BackspaceBackspace
Horizontal TabHorizontal Tab
Newline (Line Feed)Newline (Line Feed)
Vertical TabVertical Tab
Form FeedForm Feed
Carriage ReturnCarriage Return
Quotation Mark (")Quotation Mark (")
Apostrophe/Single Quote (')Apostrophe/Single Quote (')
Question Mark (?)Question Mark (?)
Backslash (Backslash (\\))
NullNull

77
88
99
1010
1111
1212
1313
3434
3939
6363
9292
00



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  611224 CPL

Example

String Literals
How to Include Special Characters in Strings

This string includes a newline character
Escape sequences may be included in a 
string like any ordinary character
The backslash plus the character that 
follows it are considered a single 
character and have a single ASCII value

charchar messagemessage[] =[] = "Please enter a command"Please enter a command……\\n"n"



© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL Slide      62

Section 1.4
Symbolic Constants



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  631224 CPL

Symbolic Constants

Constants
Once assigned, never change their value
Make development changes easy
Eliminate the use of "magic numbers"
Two types of constants

Text Substitution Labels
Variable Constants (!!??)

Definition

A A constantconstant or a or a symbolic constantsymbolic constant is a label that is a label that 
represents a literal.  Anywhere the label is encountered represents a literal.  Anywhere the label is encountered 
in code, it will be interpreted as the value of the literal it in code, it will be interpreted as the value of the literal it 
represents.represents.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  641224 CPL

Some texts on C declare constants like:

This is not efficient for an embedded 
system: A variable is allocated in program 
memory, but it cannot be changed due to 
the const keyword
This is not the traditional use of const
In the vast majority of cases, it is better to 
use #define for constants

Symbolic Constants
Constant Variables Using const

Example

constconst floatfloat PI PI == 3.1415933.141593;;



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  651224 CPL

Symbolic Constants
Text Substitution Labels Using #define

Defines a text substitution label
Syntax

#define#define label textlabel text

Example

#define#define PI PI 3.141593.14159
#define#define mol mol 6.02E236.02E23
#define#define MCU MCU "PIC24FJ128GA010""PIC24FJ128GA010"
#define#define COEF 2 * PICOEF 2 * PI

Each instance of label will be replaced with text by the 
preprocessor unless label is inside a string
No memory is used in the microcontroller



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  661224 CPL

Example

Note: a #define directive is NEVER
terminated with a semi-colon (;), unless 
you want that to be part of the text 
substitution.

Symbolic Constants
#define Gotchas

#define#define MyConstMyConst 55;;

c c == MyConstMyConst ++ 33;;

c c == 55; +; + 33;;



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  671224 CPL

Example

Symbolic Constants
Initializing Variables When Declared

#define#define CONSTANT1 CONSTANT1 55
constconst CONSTANT2 CONSTANT2 == 1010;;

intint variable1 variable1 == CONSTANT1CONSTANT1;;
intint variable2variable2;;
// Cannot do: // Cannot do: intint variable2 = CONSTANT2variable2 = CONSTANT2

A constant declared with const may not 
be used to initialize a variable when it is 
declared



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  681224 CPL

On the CDOn the CD
……\\101_ECP101_ECP\\Lab02Lab02\\Lab02.mcwLab02.mcw

Lab 02
Symbolic Constants



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  691224 CPL

Lab 02
Symbolic Constants

Open the project’s workspace:
On the lab PCOn the lab PC
C:C:\\RTCRTC\\101_ECP101_ECP\\Lab02Lab02\\Lab02.mcwLab02.mcw

11 Open MPLABOpen MPLAB®® IDE and select IDE and select Open Open 
WorkspaceWorkspace…… from the from the FileFile menu.menu.
Open the file listed above.Open the file listed above.

If you already have a project open in If you already have a project open in 
MPLAB IDE, close it by selecting MPLAB IDE, close it by selecting 
Close WorkspaceClose Workspace from the from the FileFile menu menu 
before opening a new one.before opening a new one.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  701224 CPL

Lab 02
Symbolic Constants

Compile and run the code:

22 Click on the Click on the Build AllBuild All button.button.

Compile (Build All)Compile (Build All) RunRun22 33

33 If no errors are reported,If no errors are reported,
click on the click on the RunRun button.button.

HaltHalt44

44 Click on the Click on the HaltHalt button.button.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  711224 CPL

Lab 02
Symbolic Constants

Expected Results (1):

55 The The SIM Uart1SIM Uart1 window should show the text that window should show the text that 
is output by the program, indicating the values of is output by the program, indicating the values of 
the two symbolic constants in the code.the two symbolic constants in the code.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  721224 CPL

Lab 02
Symbolic Constants

Expected Results (2):

66 The watch window should show the two symbolic The watch window should show the two symbolic 
constants declared in code.  constants declared in code.  CONSTANT1CONSTANT1 was was 
declared with declared with #define#define, and therefore uses no , and therefore uses no 
memory.  memory.  CONSTANT2CONSTANT2 was declared with was declared with constconst
and is stored as an immutable variable in Flash and is stored as an immutable variable in Flash 
program memory.program memory.

CONSTANT1CONSTANT1 has has 
nono addressaddress

CONSTANT2CONSTANT2 has a has a 
program memory program memory 

address (    )address (    )



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  731224 CPL

Lab 02
Symbolic Constants

Expected Results (3):

77 If we look in the program memory window, we If we look in the program memory window, we 
can find can find CONSTANT2CONSTANT2 which was created with which was created with 
constconst at address 0x011D0 (as was shown in the at address 0x011D0 (as was shown in the 
watch window)watch window)



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  741224 CPL

Lab 02
Symbolic Constants

Expected Results (4):

88 If we open the map file (in the lab02 project If we open the map file (in the lab02 project 
directory), we can see that memory has been directory), we can see that memory has been 
allocated for allocated for CONSTANT2CONSTANT2 at 0x011D0, but nothing at 0x011D0, but nothing 
has been allocated for has been allocated for CONSTANT1CONSTANT1..

External Symbols in Program Memory (by name):

0x0011d0          _CONSTANT2
0x000e16          __Atexit
0x000b9c          __Closreg
0x00057c          __DNKfflush
0x0012d8          __DefaultInterrupt

CONSTANT1 does not appear anywhere in the map file

lab02.map



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  751224 CPL

Lab 02
Conclusions

Constants make code more readable
Constants improve maintainability
#define should be used to define 
constants
#define constants use no memory, so they 
may be used freely
const should never be used in this context 
(it has other uses…)



© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL Slide      76

Section 1.5
printf() Function



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  771224 CPL

printf()
Standard Library Function

Used to write text to the "standard output"
Normally a computer monitor or printer
Often the UART in embedded systems
SIM Uart1 window in MPLAB® SIM



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  781224 CPL

printf()
Standard Library Function

Syntax

printfprintf((ControlStringControlString,, arg1arg1,,……argnargn););

Example

intint a a == 55,, b b == 1010;;
printfprintf(("a"a = = %%dd\\nbnb = = %%dd\\nn"",, aa,, bb););

Result:Result:

a = 5a = 5
b = 10b = 10

Everything printed verbatim within string except %d's
which are replaced by the argument values from the list



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  791224 CPL

printf()
Conversion Characters for Control String

Conversion
Character Meaning

cc
ss
dd
oo
uu
xx
XX
ff
ee
EE
gg
GG

Single characterSingle character
String (all characters until 'String (all characters until '\\0')0')
Signed decimal integerSigned decimal integer
Unsigned octal integerUnsigned octal integer
Unsigned decimal integerUnsigned decimal integer
Unsigned hexadecimal integer with lowercase digits (Unsigned hexadecimal integer with lowercase digits (1a5e1a5e))
As As xx, but with uppercase digits (e.g. , but with uppercase digits (e.g. 1A5E1A5E))
Signed decimal value (floating point)Signed decimal value (floating point)
Signed decimal with exponent (e.g. Signed decimal with exponent (e.g. 1.26e1.26e--55))
As As ee, but uses , but uses EE for exponent (e.g.  for exponent (e.g.  1.26E1.26E--55))
As As ee or or ff, but depends on size and precision of value, but depends on size and precision of value
As As gg, but uses , but uses EE for exponentfor exponent



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  801224 CPL

printf()
Gotchas

The value displayed is interpreted entirely 
by the formatting string:
printf("ASCII = %d", 'a');
will output: ASCII = 97
A more problematic string:
printf("Value = %d", 6.02e23);
will output: Value = 26366
Incorrect results may be displayed if the 
format type doesn't match the actual data 
type of the argument  



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  811224 CPL

printf()
Useful Format String Examples for Debugging

Print a 16-bit hexadecimal value with a 
"0x" prefix and leading zeros if necessary 
to fill a 4 hex digit value:

# Specifies that a 0x or 0X should precede a hexadecimal value (has 
other meanings for different conversion characters)

06 Specifies that 6 characters must be output (including 0x prefix), 
zeros will be filled in at left if necessary

x Specifies that the output value should be expressed as a 
hexadecimal integer

printf("Addressprintf("Address of x = of x = %#06x%#06x\\n", n", x_ptrx_ptr););



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  821224 CPL

printf()
Useful Format String Examples for Debugging

Same as previous, but force hex letters to 
uppercase while leaving the 'x' in '0x' 
lowercase:

04 Specifies that 4 characters must be output (no longer including 0x 
prefix since that is explicitly included in the string), zeros will be 
filled in at left if necessary

X Specifies that the output value should be expressed as a 
hexadecimal integer with uppercase A-F

printf("Addressprintf("Address of x = 0xof x = 0x%04X%04X\\n", n", x_ptrx_ptr););



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  831224 CPL

On the CDOn the CD
……\\101_ECP101_ECP\\Lab03Lab03\\Lab03.mcwLab03.mcw

Lab 03
printf() Library Function



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  841224 CPL

Lab 03
printf() Library Function

Open the project’s workspace:
On the lab PCOn the lab PC
C:C:\\RTCRTC\\101_ECP101_ECP\\Lab03Lab03\\Lab03.mcwLab03.mcw

11 Open MPLABOpen MPLAB®® IDE and select IDE and select Open Open 
WorkspaceWorkspace…… from the from the FileFile menu.menu.
Open the file listed above.Open the file listed above.

If you already have a project open in If you already have a project open in 
MPLAB IDE, close it by selecting MPLAB IDE, close it by selecting 
Close WorkspaceClose Workspace from the from the FileFile menu menu 
before opening a new one.before opening a new one.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  851224 CPL

Lab 03
printf() Library Function

Compile and run the code:

22 Click on the Click on the Build AllBuild All button.button.

Compile (Build All)Compile (Build All) RunRun22 33

33 If no errors are reported,If no errors are reported,
click on the click on the RunRun button.button.

HaltHalt44

44 Click on the Click on the HaltHalt button.button.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  861224 CPL

Lab 03
printf() Library Function

Expected Results (1):

55 The The SIM Uart1SIM Uart1 window should show the text that window should show the text that 
is output by the program by is output by the program by printfprintf()(), showing , showing 
the how values are printed based on the the how values are printed based on the 
formatting character used in the control string.formatting character used in the control string.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  871224 CPL

Lab 03
printf() Library Function

Expected Results (2):

-24058printfprintf(("'Microchip' as decimal (d): "'Microchip' as decimal (d): %d%d\\n"n",, "Microchip""Microchip"););

Microchipprintfprintf(("'Microchip' as string (s): %s"'Microchip' as string (s): %s\\n"n",, "Microchip""Microchip"););

26366printfprintf(("6.02e23 as decimal (d): "6.02e23 as decimal (d): %d%d\\n"n",, 6.02e236.02e23););

6.020000e+23printfprintf(("6.02e23 as exponent (e): %e"6.02e23 as exponent (e): %e\\n"n",, 6.02e236.02e23););

16419

2.550000

97

a

25

printfprintf(("2.55 as decimal (d): "2.55 as decimal (d): %d%d\\n"n",, 2.552.55););

printfprintf(("2.55 as float (f): %f"2.55 as float (f): %f\\n"n",, 2.552.55););

printfprintf(("'a' as decimal (d): "'a' as decimal (d): %d%d\\n"n",, 'a''a'););

printfprintf(("'a' as character (c): %c"'a' as character (c): %c\\n"n",, 'a''a'););

printfprintf(("25 as decimal (d): %d"25 as decimal (d): %d\\n"n",, 2525););

Detailed Analysis:Detailed Analysis:
Line of Code From Demo ProjectLine of Code From Demo Project OutputOutput



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  881224 CPL

Lab 03
Conclusions

printf() has limited use in embedded 
applications themselves
It is very useful as a debugging tool
It can display data almost any way you 
want
Projects that use printf() must:

Configure a heap (done in MPLAB® IDE)
Include the stdio.h header file



© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL Slide      89

Section 1.6
Operators



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  901224 CPL

Definition

Operators
How to Code Arithmetic Expressions

Operands may be variables, constants or 
functions that return a value

A microcontroller register is usually treated as 
a variable

There are 9 arithmetic operators that may 
be used

Binary Operators: +, -, *, /, %
Unary Operators: +, -, ++, --

An An arithmetic expressionarithmetic expression is an expression that contains is an expression that contains 
one or more operands and arithmetic operators.one or more operands and arithmetic operators.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  911224 CPL

NegativeNegative-- (unary)(unary)

SubtractionSubtraction--

PositivePositive++ (unary)(unary)

ModuloModulo%%

AdditionAddition++

Operators
Arithmetic

NOTE NOTE -- An An intint divided by an divided by an intint returns an returns an intint::
10/3 = 310/3 = 3
Use modulo to get the remainder:Use modulo to get the remainder:
10%3 = 110%3 = 1

MultiplicationMultiplication**

DivisionDivision//

Operator ResultOperation Example

--xx

x x -- yy

+x+x

x % yx % y

x + yx + y

x * yx * y

x / yx / y

Negative value of Negative value of xx

Difference of Difference of xx and and yy
Value of Value of xx

Remainder of Remainder of xx divided by divided by yy
Sum of Sum of xx and and yy

Product of Product of xx and and yy
Quotient of Quotient of xx and and yy



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  921224 CPL

Example: Integer Divide Example: Floating Point Divide

Operators
Division Operator

If both operands are an integer type, the result 
will be an integer type (int, char)
If one or both of the operands is a floating point 
type, the result will be a floating point type (float, 
double)

intint a a == 1010;;
intint b b == 44;;
floatfloat cc;;
c c == a a // bb;;

intint a a == 1010;;
floatfloat b b == 4.0f4.0f;;
floatfloat cc;;
c c == a / b;a / b;

c = 2.c = 2.000000000000
Because: Because: intint / / intint intint

c = 2.c = 2.550000000000
Because: float / Because: float / intint floatfloat



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  931224 CPL

Operators
Implicit Type Conversion

In many expressions, the type of one 
operand will be temporarily "promoted" to 
the larger type of the other operand

A smaller data type will be promoted to the 
largest type in the expression for the 
duration of the operation

Example

intint x x == 1010;;
floatfloat y y == 2.02.0,, zz;;
zz = = xx * * yy;            ;            // x promoted to float// x promoted to float



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  941224 CPL

Operators
Implicit Arithmetic Type Conversion Hierarchy

char

int

unsigned int

long

unsigned long

long long

unsigned long long

float

double

long double

unsigned charSm
al

le
r t

yp
es

 c
on

ve
rt

ed
 to

 
la

rg
es

t t
yp

e 
in

 e
xp

re
ss

io
n



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  951224 CPL

--xx xx is promoted to is promoted to intint intint 55
x * x * --2L2L xx is promoted to is promoted to longlong

because because --2L2L is a is a longlong
longlong 1010

8/x8/x xx is promoted to is promoted to intint intint --11
8%x8%x xx is promoted to is promoted to intint intint 33
8.0/x8.0/x xx is promoted to is promoted to doubledouble

because because 8.08.0 is a is a doubledouble
doubledouble --1.61.6

Expression Implicit Type Conversion Expression's Type

Operators
Arithmetic Expression Implicit Type Conversion

Assume x is defined as:
short x = short x = --5;5;

Result

Example implicit type conversions



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  961224 CPL

Operators
Applications of the Modulus Operator (%)

Truncation: x % 2n where n is the desired word 
width (e.g. 8 for 8 bits: x % 256)

Returns the value of just the lower n-bits of x
Can be used to break apart a number in any base 
into its individual digits

Example
#define #define MAX_DIGITS 6MAX_DIGITS 6
long long number = 123456number = 123456;;
intint ii,, radix = 10radix = 10; ; char char digitsdigits[[MAX_DIGITSMAX_DIGITS];];

forfor ((i i == 00;; i i << MAX_DIGITSMAX_DIGITS;; ii++)++)
{{

ifif ((number number ==== 00)) breakbreak;;
digitsdigits[[ii]] == ((charchar)()(numbernumber %% radixradix););
number number /=/= radixradix;;

} } 



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  971224 CPL

Operators
Arithmetic: Increment and Decrement

x x == 55;;
y y == ((x++x++) +) + 55;;
// y = 10// y = 10
// x = 6// x = 6

x x == 55;;
y y = (= (++x++x) +) + 55;;
// y = 11// y = 11
// x = 6// x = 6

Operator ResultOperation Example

DecrementDecrement----

IncrementIncrement++++

xx----

----xx

x++x++

++x++x

Use Use xx then decrement then decrement xx by 1by 1
Decrement Decrement xx by 1, then use by 1, then use xx

Use Use xx then increment then increment xx by 1by 1
Increment Increment xx by 1, then use by 1, then use xx

Postfix Example Prefix Example



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  981224 CPL

Definition

Operators
How to Code Assignment Statements

Two types of assignment statements
Simple assignment
variable = expression;
The expression is evaluated and the result is 
assigned to the variable
Compound assignment
variable = variable op expression;
The variable appears on both sides of the =

An An assignment statementassignment statement is a statement that assigns a is a statement that assigns a 
value to a variable.value to a variable.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  991224 CPL

>>=>>=

|=|=

<<=<<=

^=^=

x >>= yx >>= y

x |= yx |= y

x <<= yx <<= y

x ^= yx ^= y

x = x >> yx = x >> y

x = x | yx = x | y

x = x << yx = x << y

x = x ^ yx = x ^ y

&=&=

/=/=

%=%=

--==

*=*=

AssignmentAssignment==

+=+=

x &= yx &= y

x /= yx /= y

x %= yx %= y

x x --= y= y

x *= yx *= y

x = yx = y

x += yx += y

x = x & yx = x & y

x = x / yx = x / y

x = x % yx = x % y

x = x x = x -- yy

x = x * yx = x * y

Assign Assign xx the value of the value of yy
x = x + yx = x + y

Operators
Assignment

Operator ResultOperation Example

AssignmentAssignment
CompoundCompound



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1001224 CPL

Statements with the same variable on each 
side of the equals sign:

May use the shortcut assignment 
operators (compound assignment):

Example

Operators
Compound Assignment

x x == x x ++ yy;;

Example

x x +=+= yy;    ;    //Increment x by the value y//Increment x by the value y

This operation may be thought of as: The new value of This operation may be thought of as: The new value of xx will be will be 
set equal to the current value of set equal to the current value of xx plus the value of plus the value of yy



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1011224 CPL

Example

Operators
Compound Assignment

intint x x == 22;; //Initial value of x is 2//Initial value of x is 2

x x *=*= 55;; //x = x * 5//x = x * 5

Before statement is executed: Before statement is executed: xx = 2= 2
After statement is executed: After statement is executed: xx = 10= 10

x *= 5;x *= 5;
x = (x * 5);x = (x * 5);
x = (2 * 5);x = (2 * 5);
x = 10;x = 10;

Is equivalent to:Is equivalent to:

Evaluate right side first:Evaluate right side first:
Assign result to Assign result to xx::



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1021224 CPL

Operators
Relational

In conditional expressions, In conditional expressions, any nonany non--zero valuezero value is is 
interpreted as TRUE.  A value of 0 is always FALSE.interpreted as TRUE.  A value of 0 is always FALSE.

Operator Result (FALSE = 0, TRUE ≠ 0)Operation Example

Equal toEqual to====

Not equal toNot equal to!=!=

Greater thanGreater than>>

Greater than Greater than 
or equal toor equal to

>=>=

Less thanLess than<<

Less than orLess than or
equal toequal to<=<=

x == yx == y

x != yx != y

x > yx > y

x >= yx >= y

x < yx < y

x <= yx <= y

1 if 1 if xx equal to equal to yy, else 0, else 0

1 if 1 if xx not equal to not equal to yy, else 0, else 0

1 if 1 if xx greater than greater than yy, else 0, else 0

1 if 1 if xx greater than or equal to greater than or equal to yy, , 
else 0else 0

1 if 1 if xx less than less than yy, else 0, else 0

1 if 1 if xx less than or equal to less than or equal to yy, , 
else 0else 0



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1031224 CPL

Operators
Difference Between = and ==

= is the assignment operator
x = 5 assigns the value 5 to the variable x
== is the 'equals to' relational operator
x == 5 tests whether the value of x is 5

Be careful not to confuse Be careful not to confuse == and and ====..
They are not interchangeable!They are not interchangeable!

ifif ((x x ==== 55))
{{

do if value of do if value of xx is 5is 5
}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1041224 CPL

Example

Operators
Difference Between = and ==

What happens when the following code is 
executed?

voidvoid mainmain((voidvoid))
{{
intint x x == 22;          ;          //Initialize x//Initialize x
ifif ((x x == 55)          )          //If x is 5,//If x is 5,……
{{

printfprintf(("Hi"Hi!"!");   );   ////……display "Hi!"display "Hi!"
}}

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1051224 CPL

Operators
Logical

Logical NOTLogical NOT!!

Logical ORLogical OR||||

Logical ANDLogical AND&&&&

!x!x

x || yx || y

x && yx && y

1 if 1 if xx == 00, else 0, else 0

0 if 0 if bothboth xx == 00 and and yy == 00,,
else 1else 1

1 if 1 if bothboth xx ≠≠ 00 and and yy ≠≠ 00,,
else 0else 0

Operator Result (FALSE = 0, TRUE ≠ 0)Operation Example

In conditional expressions, any non-zero value is 
interpreted as TRUE.  A value of 0 is always FALSE.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1061224 CPL

Operators
Bitwise

Operator Result (for each bit position)Operation Example

Bitwise XORBitwise XOR^̂

Bitwise NOTBitwise NOT
(One's Complement)(One's Complement)

~~

Bitwise ANDBitwise AND&&

Bitwise ORBitwise OR||

x ^ yx ^ y

~x~x

x & yx & y

x | yx | y

1, if 1 in 1, if 1 in xx or or yy but not bothbut not both
0, if 0 or 1 in both 0, if 0 or 1 in both xx and and yy

1, if 0 in 1, if 0 in xx
0, if 1 in 0, if 1 in xx

1, if 1 in both 1, if 1 in both xx and and yy
0, if 0 in 0, if 0 in xx or or yy or bothor both
1, if 1 in 1, if 1 in xx or or yy or bothor both
0, if 0 in both 0, if 0 in both xx and and yy

The operation is carried out on each bit of 
the first operand with each corresponding 
bit of the second operand



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1071224 CPL

Operators
Difference Between & and &&

& is the bitwise AND operator
0b1010 & 0b1101 0b1000

&& is the logical AND operator
0b1010 && 0b1101 0b0001 (TRUE)
<Non-Zero Value> && <Non-Zero Value> 1 (TRUE)

Be careful not to confuse Be careful not to confuse && and and &&&&..
They are not interchangeable!They are not interchangeable!

ifif ((x x &&&& yy))
{{

do if do if xx and and yy are both TRUE (nonare both TRUE (non--zero)zero)
}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1081224 CPL

Operators
Difference Between & and &&

What happens when each of these code 
fragments are executed?

Example 1 – Using A Bitwise AND Operator 

Example 2 – Using A Logical AND Operator

char char xx == 0b10100b1010;;
char char yy == 0b01010b0101;;
ifif ((x x &&&& yy) ) printfprintf(("Hi"Hi!"!"););

char char xx == 0b10100b1010;;
char char yy == 0b01010b0101;;
ifif ((x x && yy) ) printfprintf(("Hi"Hi!"!"););



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1091224 CPL

Operators
Logical Operators and Short Circuit Evaluation

The evaluation of expressions in a logical 
operation stops as soon as a TRUE or 
FALSE result is known

Example

If we have two expressions being tested in a logical AND operatiIf we have two expressions being tested in a logical AND operation:on:

expr1expr1 && && expr2expr2
The expressions are evaluated from left to right.  If The expressions are evaluated from left to right.  If expr1expr1 is 0 (FALSE), then is 0 (FALSE), then 
expr2expr2 would not be evaluated at all since the overall result is alreawould not be evaluated at all since the overall result is already known dy known 
to be false.  to be false.  

expr1expr1 expr2expr2 ResultResult
00 X (0)X (0) 00
00 X (1)X (1) 00
11 00 00
11 11 11

Truth Table for AND (&&)Truth Table for AND (&&)
FALSE = 0FALSE = 0
TRUE = 1TRUE = 1

expr2expr2 is not evaluated is not evaluated 
in the first two cases in the first two cases 
since its value is not since its value is not 
relevant to the result.relevant to the result.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1101224 CPL

Example

Operators
Logical Operators and Short Circuit Evaluation

The danger of short circuit evaluation

ifif !!((((zz == x x ++ yy) && () && (cc == a a ++ bb))))
{{

zz +=+= 55;;
cc +=+= 1010;;

}}

It is perfectly legal in C to logically compare two assignment eIt is perfectly legal in C to logically compare two assignment expressions in xpressions in 
this way, though it is not usually good programming practice.this way, though it is not usually good programming practice.
A similar problem exists when using function calls in logical opA similar problem exists when using function calls in logical operations, which erations, which 
is a very common practice.  The second function may never be evais a very common practice.  The second function may never be evaluated.luated.

If If zz = 0, then = 0, then cc will will notnot be evaluatedbe evaluated

Initial value of Initial value of cc may not be correctmay not be correct



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1111224 CPL

Operators
Shift

Shift Left Example:
x = 5; // x = 0b00000101 = 5
y = x << 2; // y = 0b00010100 = 20

In both shift left and shift right, the bits 
that are shifted out are lost
For shift left, 0's are shifted in (Zero Fill)

Operator ResultOperation Example

Shift LeftShift Left<<<<

Shift RightShift Right>>>>

x << yx << y

x >> yx >> y

Shift Shift xx by by yy bits to the leftbits to the left

Shift Shift xx by by yy bits to the rightbits to the right



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1121224 CPL

Logical Shift Right (Zero Fill)

Arithmetic Shift Right (Sign Extend)

Operators
Shift – Special Cases

If x is UNSIGNED (unsigned char in this case):
x = 250; // x = 0b11111010 = 250
y = x >> 2; // y = 0b00111110 = 62

If x is SIGNED (char in this case):
x = -6; // x = 0b11111010 = -6
y = x >> 2; // y = 0b11111110 = -2



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1131224 CPL

00 00 00 00

Operators
Power of 2 Integer Divide vs. Shift Right

If you are dividing by a power of 2, it will 
usually be more efficient to use a right 
shift instead

Works for integers or fixed point values

y = x / 2y = x / 2nn y = x >> ny = x >> n

11 00 11 00 >>
1010 510

00 00 00 00 00 11 00 11

Right Shift



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1141224 CPL

Operators
Power of 2 Integer Divide vs. Shift in MPLAB® C30

Example: Divide by 2 Example: Right Shift by 1

intint x x == 2020;;
intint yy;;
y y == x x // 22;;

intint x x == 2020;;
intint yy;;
y y == x x >>>> 11;;

10:               y = x / 2; 10:               y = x / 2; 
00288  804000     00288  804000     mov.wmov.w 0x0800,0x0000 0x0800,0x0000 
0028A  200022     0028A  200022     mov.wmov.w #0x2,0x0004 #0x2,0x0004 
0028C  090011     repeat #17 0028C  090011     repeat #17 
0028E  D80002     0028E  D80002     div.swdiv.sw 0x0000,0x0004 0x0000,0x0004 
00290  884010     00290  884010     mov.wmov.w 0x0000,0x08020x0000,0x0802

9:                y = x >> 1; 9:                y = x >> 1; 
00282  804000     00282  804000     mov.wmov.w 0x0800,0x0000 0x0800,0x0000 
00284  DE8042     00284  DE8042     asrasr 0x0000,#1,0x0000 0x0000,#1,0x0000 
00286  884010     00286  884010     mov.wmov.w 0x0000,0x08020x0000,0x0802

y = 10y = 10 y = 10y = 10



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1151224 CPL

Example: Divide by 2 Example: Right Shift by 1

10:              y = x / 2;10:              y = x / 2;
0132    C08C     MOVFF 0x8c, 0x8a  0132    C08C     MOVFF 0x8c, 0x8a  
0134    F08A     NOP  0134    F08A     NOP  
0136    C08D     MOVFF 0x8d, 0x8b  0136    C08D     MOVFF 0x8d, 0x8b  
0138    F08B     NOP  0138    F08B     NOP  
013A    0E02     MOVLW 0x2  013A    0E02     MOVLW 0x2  
013C    6E0D     MOVWF 0xd, ACCESS  013C    6E0D     MOVWF 0xd, ACCESS  
013E    6A0E     CLRF 0xe, ACCESS  013E    6A0E     CLRF 0xe, ACCESS  
0140    C08A     MOVFF 0x8a, 0x8  0140    C08A     MOVFF 0x8a, 0x8  
0142    F008     NOP  0142    F008     NOP  
0144    C08B     MOVFF 0x8b, 0x9  0144    C08B     MOVFF 0x8b, 0x9  
0146    F009     NOP  0146    F009     NOP  
0148    EC6B     CALL 0xd6, 0 0148    EC6B     CALL 0xd6, 0 
014A    F000     NOP  014A    F000     NOP  
014C    C008     MOVFF 0x8, 0x8a  014C    C008     MOVFF 0x8, 0x8a  
014E    F08A     NOP  014E    F08A     NOP  
0150    C009     MOVFF 0x9, 0x8b  0150    C009     MOVFF 0x9, 0x8b  
0152    F08B     NOP0152    F08B     NOP

intint x x == 2020;;
intint yy;;
y y == x x // 22;;

Operators
Power of 2 Integer Divide vs. Shift in MPLAB® C18

9:               y = x >> 1; 9:               y = x >> 1; 
0122    C08C     MOVFF 0x8c, 0x8a  0122    C08C     MOVFF 0x8c, 0x8a  
0124    F08A     NOP  0124    F08A     NOP  
0126    C08D     MOVFF 0x8d, 0x8b  0126    C08D     MOVFF 0x8d, 0x8b  
0128    F08B     NOP  0128    F08B     NOP  
012A    0100     MOVLB 0  012A    0100     MOVLB 0  
012C    90D8     BCF 0xfd8, 0, ACCESS  012C    90D8     BCF 0xfd8, 0, ACCESS  
012E    338B     RRCF 0x8b, F, BANKED  012E    338B     RRCF 0x8b, F, BANKED  
0130    338A     RRCF 0x8a, F, BANKED0130    338A     RRCF 0x8a, F, BANKED

intint x x == 2020;;
intint yy;;
y y == x x >>>> 11;;y = 10y = 10 y = 10y = 10

1616--Bit Shift on 8Bit Shift on 8--Bit ArchitectureBit Architecture



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1161224 CPL

Operators
Memory Addressing

These operators will be discussed later in the sections on These operators will be discussed later in the sections on 
arrays, pointers, structures, and unions.  They are included arrays, pointers, structures, and unions.  They are included 
here for reference and completeness.here for reference and completeness.

Operator Result Operation Example

StructStruct / Union/ Union
Member by Member by 
ReferenceReference

-->>

SubscriptingSubscripting[][]

StructStruct / Union / Union 
MemberMember

..

Address ofAddress of&&

IndirectionIndirection**

pp-->y>y

x[yx[y]]

x.yx.y

&x&x

*p*p

The member named The member named yy in the in the 
structure or union that  structure or union that  pp
points topoints to

The The yythth element of array element of array xx

The member named The member named yy in the in the 
structure or union structure or union xx

Pointer to Pointer to xx

The object or function that The object or function that pp
points topoints to



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1171224 CPL

Operators
Other

()()

sizeofsizeof

(type)(type)

?:?:

,,

Function CallFunction Call

Size of an Size of an 
object or type object or type 
in bytesin bytes

Explicit type Explicit type 
castcast

Conditional Conditional 
expressionexpression

Sequential Sequential 
evaluationevaluation

Operator Result Operation Example

foo(xfoo(x)) Passes control to thePasses control to the
function with thefunction with the
specified argumentsspecified arguments

sizeofsizeof xx The number of bytes The number of bytes xx
occupies in memory occupies in memory 

(short) x(short) x Converts the value of Converts the value of xx
to the specified type to the specified type 

x ? y : zx ? y : z The value of The value of yy if if xx is true, is true, 
else value of else value of zz

x, yx, y Evaluates Evaluates xx then then yy, else , else 
result is value of result is value of yy



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1181224 CPL

Example

Syntax

Operators
The Conditional Operator

((testtest--exprexpr) ? ) ? dodo--ifif--truetrue : : dodo--ifif--falsefalse;;

5 is odd5 is odd
Result:Result:

intint x x == 55;;

((x x %% 22 !=!= 00) ?) ?
printfprintf(("%d"%d is oddis odd\\n"n",, xx) :) :
printfprintf(("%d"%d is evenis even\\n"n",, xx););



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1191224 CPL

Operators
The Conditional Operator

x = (condition) ? A : B;

x = A if condition is true
x = B if condition is false



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1201224 CPL

Operators
The Explicit Type Cast Operator

Example: Integer Divide Example: Floating Point Divide

intint x x == 1010;;
floatfloat yy;;

y y == x x // 44;;

intint x x == 1010;;
floatfloat yy;;

y y == ((floatfloat))xx // 44;;

y = 2.y = 2.000000000000
Because: Because: intint / / intint intint

y = 2.y = 2.550000000000
Because: float / Because: float / intint floatfloat

Earlier, we cast a literal to type float by 
entering it as: 4.0f
We can cast the variable instead by using 
the cast operator: (type)variable



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1211224 CPL

Operators
Precedence

Operator Description Associativity

( )( ) Parenthesized ExpressionParenthesized Expression
[ ][ ] Array SubscriptArray Subscript
.. Structure MemberStructure Member
-->> Structure PointerStructure Pointer

LeftLeft--toto--RightRight

+ + -- Unary + and Unary + and –– (Positive and Negative Signs)(Positive and Negative Signs)
++ ++ ---- Increment and DecrementIncrement and Decrement
! ~! ~ Logical NOT and Bitwise ComplementLogical NOT and Bitwise Complement
** Dereference (Pointer)Dereference (Pointer)
&& Address ofAddress of

sizeofsizeof Size of Expression or TypeSize of Expression or Type
(type)(type) Explicit TypecastExplicit Typecast

RightRight--toto--LeftLeft

Continued on next slideContinued on next slide……



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1221224 CPL

&&&& Logical ANDLogical AND
|||| Logical ORLogical OR
?:?: Conditional OperatorConditional Operator

LeftLeft--toto--RightRight

LeftLeft--toto--RightRight

RightRight--toto--LeftLeft

Operators
Precedence

Operator Description Associativity

* / %* / % Multiply, Divide, and ModulusMultiply, Divide, and Modulus
+ + -- Add and SubtractAdd and Subtract

<< >><< >> Shift Left and Shift RightShift Left and Shift Right
< <=< <= Less Than and Less Than or Equal ToLess Than and Less Than or Equal To

LeftLeft--toto--RightRight

> >=> >= Greater Than and Greater Than or Equal ToGreater Than and Greater Than or Equal To
== !=== != Equal To and Not Equal ToEqual To and Not Equal To

&& Bitwise ANDBitwise AND
^̂ Bitwise XORBitwise XOR
|| Bitwise ORBitwise OR

Continued on next slideContinued on next slide……

LeftLeft--toto--RightRight

LeftLeft--toto--RightRight

LeftLeft--toto--RightRight

LeftLeft--toto--RightRight

LeftLeft--toto--RightRight

LeftLeft--toto--RightRight

LeftLeft--toto--RightRight

LeftLeft--toto--RightRight



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1231224 CPL

Operators
Precedence

Operator Description Associativity

== AssignmentAssignment
+= += --== Addition and Subtraction AssignmentsAddition and Subtraction Assignments
/= *=/= *= Division and Multiplication AssignmentsDivision and Multiplication Assignments
%=%= Modulus AssignmentModulus Assignment

<<= >>=<<= >>= Shift Left and Shift Right AssignmentsShift Left and Shift Right Assignments
&= |=&= |= Bitwise AND and OR AssignmentsBitwise AND and OR Assignments
^=^= Bitwise XOR AssignmentBitwise XOR Assignment

,, Comma OperatorComma Operator

RightRight--toto--LeftLeft

LeftLeft--toto--RightRight

Operators grouped together in a section have 
the same precedence – conflicts within a section 
are handled via the rules of associativity



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1241224 CPL

Expression Effective Expression

Operators
Precedence

When expressions contain multiple 
operators, their precedence determines 
the order of evaluation

a a –– b * cb * c a a –– (b * c)(b * c)

a + ++ba + ++b a + (++b)a + (++b)

a + ++b * ca + ++b * c a + ((++b) * c)a + ((++b) * c)

If functions are used in an expression, there is no set order ofIf functions are used in an expression, there is no set order of
evaluation for the functions themselves.evaluation for the functions themselves.
e.g.  e.g.  x = f() + g()x = f() + g()
There is no way to know if There is no way to know if f()f() or or g()g() will be evaluated first.will be evaluated first.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1251224 CPL

If two operators have the same 
precedence, their associativity determines 
the order of evaluation

You can rely on these rules, but it is good 
programming practice to explicitly group 
elements of an expression

Operators
Associativity

Expression Effective ExpressionAssociativity

x / y % zx / y % z (x / y) % z(x / y) % zLeftLeft--toto--RightRight

x = y = zx = y = z x = (y = z)x = (y = z)RightRight--toto--LeftLeft

~++x~++x ~(++x)~(++x)RightRight--toto--LeftLeft



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1261224 CPL

On the CDOn the CD
……\\101_ECP101_ECP\\Lab04Lab04\\Lab04.mcwLab04.mcw

Lab 04
Operators



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1271224 CPL

Lab 04
Operators

Open the project’s workspace:
On the lab PCOn the lab PC
C:C:\\RTCRTC\\101_ECP101_ECP\\Lab04Lab04\\Lab04.mcwLab04.mcw

11 Open MPLABOpen MPLAB®® IDE and select IDE and select Open Open 
WorkspaceWorkspace…… from the from the FileFile menu.menu.
Open the file listed above.Open the file listed above.

If you already have a project open in If you already have a project open in 
MPLAB IDE, close it by selecting MPLAB IDE, close it by selecting 
Close WorkspaceClose Workspace from the from the FileFile menu menu 
before opening a new one.before opening a new one.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1281224 CPL

Lab 04
Operators

/*###########################################################################
# STEP 1:  Add charVariable1 to charVariable2 and store the result in
#          charVariable1.  This may be done in two ways.  One uses the 
#          ordinary addition operator, the other uses a compound assignment
#          operator.  Write two lines of code to perform this operation 
#          twice - once for each of the two methods.  
#          Don't forget to end each statement with a semi-colon!
###########################################################################*/

//Add using addition operator
charVariable1 = charVariable1 + charVariable2;
//Add using compound assignment operator
charVariable1 += charVariable2;

/*###########################################################################
# STEP 2:  Increment charVariable1.  There are several ways this could be
#          done.  Use the one that requires the least amount of typing.
###########################################################################*/

//Increment charVariable1
charVariable1++;

Solution: Steps 1 and 2



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1291224 CPL

Lab 04
Operators

/*###########################################################################
# STEP 3: Use the conditional operator to set longVariable1 equal to 
#         intVariable1 if charVariable1 is less than charVariable2.
#         Otherwise, set longVariable1 equal to intVariable2
# NOTE:   The comments below are broken up into 3 lines, but the code you
#         need to write can fit on a single line.
###########################################################################*/

//If charVariable1 < charVariable2, then
//longVariable1 = intVariable1, otherwise
//longVariable1 = intVariable2
longVariable1 = (charVariable1 < charVariable2) ? intVariable1 : intVariable2;

/*###########################################################################
# STEP 4: Shift longVariable2 one bit to the right.  This can be accomplished
#         most easily using the appropriate compound assignment operator.
###########################################################################*/

//Shift longVariable2 one bit to the right
longVariable2 >>= 1;

Solution: Steps 3 and 4



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1301224 CPL

Lab 04
Operators

/*###########################################################################
# STEP 5: Perform the operation (longVariable2 AND 0x30) and store the result
#         back in longVariable2.  Once again, the easiest way to do this is
#         to use the appropriate compound assignment operator that will
#         perform an equivalent operation to the one in the comment below.
###########################################################################*/

//longVariable2 = longVariable2 & 0x30
longVariable2 &= 0x30;

Solution: Step 5



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1311224 CPL

Lab 04
Conclusions

Most operators look just like their normal 
mathematical notation
C adds several shortcut operators in the 
form of compound assignments
Most C programmers tend to use the 
shortcut operators



© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL Slide      
132

Section 1.7
Expressions and 

Statements



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1331224 CPL

Expressions

Represents a single data item (e.g. 
character, number, etc.)

May consist of:
A single entity (a constant, variable, etc.)

A combination of entities connected by 
operators (+, -, *, / and so on)



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1341224 CPL

Example

Expressions
Examples

a a ++ bb
x x == yy
speed speed == distdist//timetime
z z == ReadInputReadInput()()
c c <=<= 77
x x ==== 2525
countcount++++
d d == a a ++ 55



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1351224 CPL

Statements

Cause an action to be carried out

Three kinds of statements in C:
Expression Statements

Compound Statements

Control Statements



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1361224 CPL

Examples

Expression Statements
An expression followed by a semi-colon
Execution of the statement causes the 
expression to be evaluated

i i == 00;;
ii++;++;
a a == 55 ++ ii;;
y y = (= (m m ** xx) + ) + bb;;
printf(printf("Slope"Slope = %f"= %f", m, m););
;;



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1371224 CPL

Compound Statements

A group of individual statements enclosed 
within a pair of curly braces { and }
Individual statements within may be any 
statement type, including compound
Allows statements to be embedded within 
other statements
Does NOT end with a semicolon after }
Also called Block Statements



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1381224 CPL

Example

Compound Statements
Example

{{
floatfloat startstart,, finishfinish;;

start start == 0.00.0;;
finish finish == 400.0400.0;;
distance distance == finish finish –– startstart;;
time time == 55.255.2;;
speed speed == distance distance // timetime;;
printfprintf(("Speed"Speed = %f = %f m/sm/s"",, speedspeed););

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1391224 CPL

Example

Control Statements
Used for loops, branches and logical tests
Often require other statements embedded 
within them

whilewhile ((distance distance << 400.0400.0))
{{

printfprintf(("Keep"Keep running!"running!"););
distance distance +=+= 0.10.1;;

}}

(while syntax: (while syntax: whilewhile exprexpr statementstatement))



© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL Slide      
140

Section 1.8
Making Decisions



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1411224 CPL

C has no Boolean data type
Boolean expressions return integers:

0 if expression evaluates as FALSE
non-zero if expression evaluates as TRUE 
(usually returns 1, but this is not guaranteed)

Boolean Expressions

intint mainmain((voidvoid))
{{

intint x x == 55,, yy,, zz;;

y y = (= (x x >> 44););
z z = (= (x x >> 66););
whilewhile ((11););

}}

y = 1  (TRUE)y = 1  (TRUE)

z = 0  (FALSE)z = 0  (FALSE)



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1421224 CPL

Boolean Expressions
Equivalent Expressions

If a variable, constant or function call is 
used alone as the conditional expression:
(MyVar) or  (Foo())
This is the same as saying:
(MyVar != 0) or  (Foo() != 0)
In either case, if MyVar ≠ 0 or Foo() ≠ 0, 
then the expression evaluates as TRUE 
(non-zero)
C Programmers almost always use the 
first method (laziness always wins in C)



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1431224 CPL

Note

Syntax

if Statement

expression is evaluated for boolean
TRUE (≠0) or FALSE (=0)
If TRUE, then statement is executed

ifif ((expressionexpression)) statementstatement

if (expression)
{

statement1
statement2

}

Whenever you see statement in a 
syntax guide, it may be replaced by a 
compound (block) statement.

Remember: spaces and new  lines are 
not significant.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1441224 CPL

Syntax

if Statement
Flow Diagram

ifif ((expressionexpression)) statementstatement

TRUE

FALSE
expression = 0

expression ≠ 0



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1451224 CPL

Example
{{

intint x x == 55;;

ifif ((xx))
{{

printfprintf(("x"x = %= %dd\\nn"",, xx););
}}
whilewhile ((11););

}}

if Statement

If x is TRUE (nonIf x is TRUE (non--zero)zero)……

……then print the value of x.then print the value of x.

What will print if x = 5?   … if x = 0?
…if x = -82?
…if x = 65536?



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1471224 CPL

if Statement
Testing for TRUE

Example: if (x) Example: if (x ==1)

if (x) if (x == 1)
8:                if (x) 
011B4  E208C2     cp0.w 0x08c2 
011B6  320004     bra z, 0x0011c0

11:               if (x == 1)
011C0  804610     mov.w 0x08c2,0x0000 
011C2  500FE1     sub.w 0x0000,#1,[0x001e] 
011C4  3A0004     bra nz, 0x0011ce

if (x) vs. if (x == 1)
if (x) only needs to test for not equal to 0
if (x == 1) needs to test for equality with 1
Remember: TRUE is defined as non-zero, FALSE is 
defined as zero



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1481224 CPL

Example

Nested if Statements

intint power power == 1010;;
floatfloat band band == 2.02.0;;
floatfloat frequency frequency == 146.52146.52;;

ifif ((power power >> 55))
{{

ifif ((band band ==== 2.02.0))
{{

ifif ((((frequency frequency >> 144144) && () && (frequency frequency << 148148))))
{{
printfprintf(("Yes"Yes, it's all true!, it's all true!\\n"n"););

}}
}}

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1491224 CPL

Syntax

if-else Statement

expression is evaluated for boolean
TRUE (≠0) or FALSE (=0)
If TRUE, then statement1 is executed
If FALSE, then statement2 is executed

ifif ((expressionexpression)) statementstatement11
elseelse statementstatement22



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1501224 CPL

if-else Statement
Flow Diagram

TRUE

FALSE
expression = 0

expression ≠ 0

Syntax

ifif ((expressionexpression)) statementstatement11
elseelse statementstatement22



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1511224 CPL

Example

if-else Statement

{{
float frequencyfloat frequency == 146.52146.52;; //frequency in MHz//frequency in MHz

ifif ((((frequency frequency >> 144.0144.0)) &&&& ((frequency frequency << 148.0148.0))))
{{

printfprintf(("You're"You're on the 2 meter bandon the 2 meter band\\n"n"););
}}

elseelse
{{

printfprintf(("You're"You're not on the 2 meter bandnot on the 2 meter band\\n"n"););
}}

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1521224 CPL

Syntax

if-else if Statement

expression1 is evaluated for boolean TRUE (≠0) 
or FALSE (=0)
If TRUE, then statement1 is executed
If FALSE, then expression2 is evaluated
If TRUE, then statement2 is executed
If FALSE, then statement3 is executed

ifif ((expressionexpression11)) statementstatement11
else ifelse if ((expressionexpression22)) statementstatement22
elseelse statementstatement33



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1531224 CPL

if-else if Statement
Flow Diagram

TRUE

FALSE

FALSE

TRUE

Syntax

ifif ((expressionexpression11)) statementstatement11
else ifelse if ((expressionexpression22)) statementstatement22
elseelse statementstatement33



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1541224 CPL

Example

if-else if Statement

ifif ((((freq freq >> 144144) && () && (freq freq << 148148))))

printfprintf(("You're"You're on the 2 meter bandon the 2 meter band\\n"n"););

else ifelse if ((((freq freq >> 222222) && () && (freq freq << 225225))))

printfprintf(("You're"You're on the 1.25 meter bandon the 1.25 meter band\\n"n"););

else ifelse if ((((freq freq >> 420420) && () && (freq freq << 450450))))

printfprintf(("You're"You're on the 70 centimeter bandon the 70 centimeter band\\n"n"););

elseelse

printfprintf(("You're"You're somewhere elsesomewhere else\\n"n"););



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1551224 CPL

On the CDOn the CD
……\\101_ECP101_ECP\\Lab05Lab05\\Lab05.mcwLab05.mcw

Lab 05
Making Decisions (if)



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1561224 CPL

Lab 05
Making Decisions (if)

Open the project’s workspace:
On the lab PCOn the lab PC
C:C:\\RTCRTC\\101_ECP101_ECP\\Lab05Lab05\\Lab05.mcwLab05.mcw

11 Open MPLABOpen MPLAB®® IDE and select IDE and select Open Open 
WorkspaceWorkspace…… from the from the FileFile menu.menu.
Open the file listed above.Open the file listed above.

If you already have a project open in If you already have a project open in 
MPLAB IDE, close it by selecting MPLAB IDE, close it by selecting 
Close WorkspaceClose Workspace from the from the FileFile menu menu 
before opening a new one.before opening a new one.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1571224 CPL

Lab 05
Making Decisions (if)

/*###########################################################################
# STEP 1: Increment intVariable1 if BOTH the following conditions are true:
#         * floatVariable2 is greater than or equal to floatVariable1
#         * charVariable2 is greater than or equal to charVariable1
#         Remember to use parentheses to group logical operations.
###########################################################################*/
//Write the if condition
if((floatVariable2 >= floatVariable1) && (charVariable2 >= charVariable1))
{

intVariable1++; //Increment intVariable1
}

/*###########################################################################
# STEP 2: If the above is not true, and floatVariable1 is greater than 50
#         then decrement intVariable2.  (HINT: else if)
###########################################################################*/
//Write the else if condition
else if(floatVariable1 > 50)
{

intVariable2--; //Decrement intVariable2
}

Solution: Steps 1 and 2



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1581224 CPL

Lab 05
Making Decisions (if)

/*###########################################################################
# STEP 3: If neither of the above are true, set charVariable2 equal to 1.
#         (HINT: else)
###########################################################################*/
//Write the else condition
else
{

charVariable2 = 1; //Set charVariable2 equal to 1

}

Solution: Step 3



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1591224 CPL

Lab 05
Conclusions

if statements make it possible to 
conditionally execute a line or block of 
code based on a logic equation
else if / else statements make it possible to 
present follow-up conditions if the first 
one proves to be false



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1601224 CPL

Syntax

switch Statement

expression is evaluated and tested for a 
match with the const-expr in each case
clause
The statements in the matching case
clause is executed

switchswitch ((expressionexpression))
{{

casecase constconst--exprexpr11:: statementsstatements11

casecase constconst--exprexprnn:: statementsstatementsnn
defaultdefault: : statementsstatementsn+1n+1

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1611224 CPL

switch Statement
Flow Diagram (default)

Const-expr1=
expression?

START

END

statement2

statement1

Const-expr2=
expression?

statementn+1

Const-exprn=
expression?

statementn

Const-expr1=
expression?

START

END

statement2

statement1

Const-expr2=
expression?

statementn+1

Const-exprn=
expression?

statementn

Notice that each 
statement falls 
through to the next

This is the default 
behavior of the 
switch statement

YES

YES

YES

NO

NO

NO



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1621224 CPL

Const-expr1=
expression?

START

END

Const-expr2=
expression?

statementn+1

Const-exprn=
expression?

statement1
break;

statement2
break;

statementn
break;

Const-expr1=
expression?

START

END

Const-expr2=
expression?

statementn+1

Const-exprn=
expression?

statement1
break;

statement2
break;

statementn
break;

switch Statement
Flow Diagram (modified)

Adding a break
statement to each 
statement block will 
eliminate fall 
through, allowing 
only one case 
clause's statement 
block to be executed

YES

YES

YES

NO

NO

NO



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1631224 CPL

switch Example 1

switch Statement

switchswitch((channelchannel))
{{

casecase 22:: printfprintf(("WBBM"WBBM ChicagoChicago\\n"n");); breakbreak;;
casecase 33:  :  printfprintf(("DVD"DVD PlayerPlayer\\n"n");); breakbreak;;
casecase 44:  :  printfprintf(("WTMJ"WTMJ MilwaukeeMilwaukee\\n"n");); breakbreak;;
casecase 55:: printfprintf(("WMAQ"WMAQ ChicagoChicago\\n"n");); breakbreak;;
casecase 66:  :  printfprintf(("WITI"WITI MilwaukeeMilwaukee\\n"n");); breakbreak;;
casecase 77:: printfprintf(("WLS"WLS ChicagoChicago\\n"n");); breakbreak;;
casecase 99:: printfprintf(("WGN"WGN ChicagoChicago\\n"n");); breakbreak;;
casecase 1010: : printfprintf(("WMVS"WMVS MilwaukeeMilwaukee\\n"n");); breakbreak;;
casecase 1111: : printfprintf(("WTTW"WTTW ChicagoChicago\\n"n");); breakbreak;;
casecase 1212: : printfprintf(("WISN"WISN MilwaukeeMilwaukee\\n"n");); breakbreak;;
defaultdefault:: printfprintf(("No"No Signal AvailableSignal Available\\n"n"););

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1641224 CPL

switch Example 2

switch Statement

switchswitch((letterletter))
{{

casecase 'a''a'::
printfprintf(("Letter"Letter 'a' found.'a' found.\\n"n"););
breakbreak;;

casecase 'b''b'::
printfprintf(("Letter"Letter 'b' found.'b' found.\\n"n"););
breakbreak;;

casecase 'c''c'::
printfprintf(("Letter"Letter 'c' found.'c' found.\\n"n"););
breakbreak;;

defaultdefault:: printfprintf(("Letter"Letter not in list.not in list.\\n"n"););
}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1651224 CPL

switch Example 3

switch Statement

switchswitch((channelchannel))
{{

casecase 4 ... 74 ... 7::
printfprintf(("VHF"VHF StationStation\\n"n");); breakbreak;;

casecase 9 ... 129 ... 12::
printfprintf(("VHF"VHF StationStation\\n"n");); breakbreak;;

casecase 33::
casecase 88::
casecase 1313: : 

printfprintf(("Weak"Weak SignalSignal\\n"n");); breakbreak;;
casecase 14 ... 6914 ... 69::

printfprintf(("UHF"UHF StationStation\\n"n");); breakbreak;;
defaultdefault::

printfprintf(("No"No Signal AvailableSignal Available\\n"n"););
}}

Case 3 and 8 are allowed to fall Case 3 and 8 are allowed to fall 
through to case 13through to case 13

Apply this case to Apply this case to channelchannel 4, 5, 4, 5, 
6, and 76, and 7



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1661224 CPL

On the CDOn the CD
……\\101_ECP101_ECP\\Lab06Lab06\\Lab06.mcwLab06.mcw

Lab 06
Making Decisions (switch)



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1671224 CPL

Lab 06
Making Decisions (switch)

Open the project’s workspace:
On the lab PCOn the lab PC
C:C:\\RTCRTC\\101_ECP101_ECP\\Lab06Lab06\\Lab06.mcwLab06.mcw

11 Open MPLABOpen MPLAB®® IDE and select IDE and select Open Open 
WorkspaceWorkspace…… from the from the FileFile menu.menu.
Open the file listed above.Open the file listed above.

If you already have a project open in If you already have a project open in 
MPLAB, close it by selecting MPLAB, close it by selecting Close Close 
WorkspaceWorkspace from the from the FileFile menu before menu before 
opening a new one.opening a new one.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1681224 CPL

Lab 06
Making Decisions (switch)

/*###########################################################################
# TASK:   Write a switch statement to print the network's initials with the
#         channel (based on Chicago TV stations).
#         * If channel = 2, print "CBS 2" to the output window.
#         * If channel = 5, print "NBC 5" to the output window.
#         * If channel = 7, print "ABC 7" to the output window.
#         * For all other channels, print "--- #" to the output window,
#           where "#" is the channel number.
#         (HINT: Use printf(), and use the newline character '\n' at the end
#          of each string you print to the output window.)
# NOTE:   The switch statement is in a loop that will execute 9 times.  Each
#         pass through the loop, 'channel' will be incremented. The output
#         window should display a line of text for channels 2 to 10.
#
# STEP 1: Open a switch statement on the variable 'channel'
###########################################################################*/
//Begin switch statement
switch(channel)
{

Solution: Step 1



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1691224 CPL

Lab 06
Making Decisions (switch)

/*###########################################################################
# STEP 2: Write case for channel = CBS (CBS is a constant defined to equal 2)
###########################################################################*/
case CBS:                         //If channel = CBS (CBS = 2)
{

printf("CBS %d\n", channel);  //Display string "CBS 2" followed by newline
break; //Prevent fall through to next case

}

/*###########################################################################
# STEP 3: Write case for channel = NBC (NBC is a constant defined to equal 5)
#         This should look almost identical to step 2.
###########################################################################*/
case NBC: //If channel = NBC (NBC = 5)
{

printf("NBC %d\n", channel);  //Display string "NBC 5" followed by newline
break;                        //Prevent fall through to next case

}

Solution: Steps 2 and 3



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1701224 CPL

Lab 06
Making Decisions (switch)

/*###########################################################################
# STEP 4: Write case for channel = ABC (ABC is a constant defined to equal 7)
#         This should look almost identical to step 2.
###########################################################################*/
case ABC:                         //If channel = ABC (ABC = 7)
{

printf("ABC %d\n", channel); //Display string "ABC 7" followed by newline
break; //Prevent fall through to next case

}

/*###########################################################################
# STEP 5: Write default case.  If channel is anything other than those 
#         listed above, this is what should be done.  For these cases, you
#         need to print the string "--- #" where "#" is the channel number.
#         For example, if channel = 6, you should print "--- 6".
###########################################################################*/
default: //For all other channels
{

printf("--- %d\n", channel);  //Display string "--- #" followed by newline
}

Solution: Steps 4 and 5



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1711224 CPL

Lab 06
Conclusions

switch provides a more elegant decision 
making structure than if for multiple 
conditions (if – else if – else if – else if…)
The drawback is that the conditions may 
only be constants (match a variable's state 
to a particular value)



© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL Slide      
172

Section 1.9
Loops



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1731224 CPL

Syntax

for Loop

expression1 initializes a loop count 
variable once at start of loop (e.g. i = 0)
expression2 is the test condition – the 
loop will continue while this is true
(e.g. i <= 10)
expression3 is executed at the end of 
each iteration – usually to modify the loop 
count variable (e.g. i++)

forfor ((expressionexpression11;; expressionexpression22;; expressionexpression33))
statementstatement



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1741224 CPL

Syntax

for Loop
Flow Diagram

forfor ((expressionexpression11; expression; expression22; expression; expression33))
statementstatement

expression2?

expression1

statement

expression3

expression2?

expression1

statement

expression3

TRUE

FALSE

i = 0

i < n

i++

Initialize loop 
variable

Test loop variable for 
exit condition

Modify loop 
variable



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1751224 CPL

Example (Code Fragment)

for Loop

intint ii;;

forfor ((i i == 00;; i i << 55;; ii++)++)
{{

printfprintf(("Loop"Loop iteration #%iteration #%dd\\nn"",, ii););
}}

Loop iteration 0Loop iteration 0
Loop iteration 1Loop iteration 1
Loop iteration 2Loop iteration 2
Loop iteration 3Loop iteration 3
Loop iteration 4Loop iteration 4

Expected Output:Expected Output:



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1761224 CPL

Note

for Loop

Any or all of the three expressions may be 
left blank (semi-colons must remain)
If expression1 or expression3 are 
missing, their actions simply disappear
If expression2 is missing, it is assumed 
to always be true

forfor ( ; ; )( ; ; )
{{

……
}}

Infinite LoopsInfinite Loops
A A forfor loop without any loop without any 
expressions will execute expressions will execute 
indefinitely (can leave loop indefinitely (can leave loop 
via via breakbreak statement)statement)



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1771224 CPL

Syntax

while Loop

If expression is true, statement will be 
executed and then expression will be re-
evaluated to determine whether or not to 
execute statement again
It is possible that statement will never 
execute if expression is false when it is 
first evaluated

whilewhile ((expressionexpression)) statementstatement



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1781224 CPL

Syntax

while Loop
Flow Diagram

whilewhile ((expressionexpression)) statementstatement

TRUE

FALSE



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1791224 CPL

Example (Code Fragment)

while Loop
Example

intint i i == 00;;

whilewhile ((i i << 55))
{{

printfprintf(("Loop"Loop iteration #%iteration #%dd\\nn"",, ii++);++);
}}

Loop iteration 0Loop iteration 0
Loop iteration 1Loop iteration 1
Loop iteration 2Loop iteration 2
Loop iteration 3Loop iteration 3
Loop iteration 4Loop iteration 4

Expected Output:Expected Output:

Loop counter initialized Loop counter initialized 
outside of loopoutside of loop

Loop counter Loop counter 
incremented manually incremented manually 

inside loopinside loop
Condition checked at Condition checked at 
start of loop iterationsstart of loop iterations



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1801224 CPL

Note

while Loop
The expression must always be there, 
unlike with a for loop
while is used more often than for when 
implementing an infinite loop, though it is 
only a matter of personal taste
Frequently used for main loop of program

whilewhile ((11))
{{

……
}}

Infinite LoopsInfinite Loops
A A  whilewhile loop  with loop  with 
expressionexpression = = 11 will execute will execute 
indefinitely  (can  leave  loop indefinitely  (can  leave  loop 
via via breakbreak statement)statement)



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1811224 CPL

Syntax

do-while Loop

statement is executed and then 
expression is evaluated to determine 
whether or not to execute statement
again
statement will always execute at least 
once, even if the expression is false when 
the loop starts

dodo statement statement whilewhile ((expressionexpression););



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1821224 CPL

Syntax

do-while Loop
Flow Diagram

dodo statement statement whilewhile ((expressionexpression););

TRUE

FALSE



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1831224 CPL

Example (Code Fragment)

do-while Loop
Example

intint i i == 00;;

dodo
{{

printfprintf(("Loop"Loop iteration #%iteration #%dd\\nn"",, ii++);++);
} } whilewhile ((i i << 55););

Loop iteration 0Loop iteration 0
Loop iteration 1Loop iteration 1
Loop iteration 2Loop iteration 2
Loop iteration 3Loop iteration 3
Loop iteration 4Loop iteration 4

Expected Output:Expected Output:

Loop counter initialized Loop counter initialized 
outside of loopoutside of loop

Loop counter Loop counter 
incremented manually incremented manually 

inside loopinside loop

Condition checked at Condition checked at 
end of loop iterationsend of loop iterations



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1841224 CPL

Syntax

break Statement

Causes immediate termination of a loop 
even if the exit condition hasn't been met
Exits from a switch statement so that 
execution doesn't fall through to next case
clause

breakbreak;;



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1851224 CPL

Syntax

break Statement
Flow Diagram Within a while Loop

breakbreak;;

TRUE

FALSE



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1861224 CPL

Example (Code Fragment)

break Statement
Example

intint i i == 00;;

whilewhile ((i i << 1010))
{{

ii++;++;
ifif ((i i ==== 55)) breakbreak;;
printfprintf(("Loop"Loop iteration #%iteration #%dd\\nn"",, ii););

}}

Loop iteration 1Loop iteration 1
Loop iteration 2Loop iteration 2
Loop iteration 3Loop iteration 3
Loop iteration 4Loop iteration 4

Expected Output:Expected Output:

Exit from the loop when i = 5.Exit from the loop when i = 5.
Iteration 6Iteration 6--9 will not be executed.9 will not be executed.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1871224 CPL

Syntax

continue Statement

Causes program to jump back to the 
beginning of a loop without completing the 
current iteration

continuecontinue;;



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1881224 CPL

Syntax

continue Statement
Flow Diagram Within a while Loop

continuecontinue;;

TRUE

FALSE



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1891224 CPL

Example (Code Fragment)

continue Statement
Example

intint i i == 00;;

whilewhile ((i i << 66))
{{

ii++;++;
ifif ((i i ==== 22)) continuecontinue;;
printfprintf(("Loop"Loop iteration #%iteration #%dd\\nn"",, ii););

}}

Loop iteration 1Loop iteration 1
Loop iteration 3Loop iteration 3
Loop iteration 4Loop iteration 4
Loop iteration 5Loop iteration 5

Expected Output:Expected Output:

Skip remaining iteration when i = 2.Skip remaining iteration when i = 2.
Iteration 2 will not be completed.Iteration 2 will not be completed.

Iteration 2 does not printIteration 2 does not print



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1901224 CPL

On the CDOn the CD
……\\101_ECP101_ECP\\Lab07Lab07\\Lab07.mcwLab07.mcw

Lab 07
Loops



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1911224 CPL

Lab 07
Loops

Open the project’s workspace:
On the lab PCOn the lab PC
C:C:\\RTCRTC\\101_ECP101_ECP\\Lab07Lab07\\Lab07.mcwLab07.mcw

11 Open MPLABOpen MPLAB®® IDE and select IDE and select Open Open 
WorkspaceWorkspace…… from the from the FileFile menu.menu.
Open the file listed above.Open the file listed above.

If you already have a project open in If you already have a project open in 
MPLAB IDE, close it by selecting MPLAB IDE, close it by selecting 
Close WorkspaceClose Workspace from the from the FileFile menu menu 
before opening a new one.before opening a new one.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1921224 CPL

Lab 07
Loops

/*###########################################################################
# STEP 1: Create a for loop to iterate the block of code below. The loop
#         should do the following:
#         * Initialize counter1 to 1
#         * Loop as long as counter1 is less than 5
#         * Increment counter1 on each pass of the loop
#         (HINT: for(init; test; action))
###########################################################################*/
//Write the opening line of the for loop
for( counter1 = 1 ; counter1 < 5 ; counter1++)
{

intVariable1 *= counter1;
printf("FOR: intVariable1 = %d, counter1 = %d\n", intVariable1, counter1);

}
//end of for loop block

Solution: Step 1



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1931224 CPL

Lab 07
Loops

/*###########################################################################
# STEP 2: Create a while loop to iterate the block of code below.  The loop
#         should run until charVariable1 is 0.
###########################################################################*/
//Loop as long as charVariable1 is not 0
while( charVariable1 != 0)
{

charVariable1--;
charVariable2 += 5;
printf("WHILE: charVariable1 = %d, charVariable2 = %d\n",

charVariable1, charVariable2);
}
//end of while loop block

Solution: Step 2



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1941224 CPL

Lab 07
Loops

/*###########################################################################
# STEP 3: Create a do...while loop to iterate the block of code below. 
#         The loop should run until counter1 is greater than 100
###########################################################################*/ 
do                              //Write opening line of do loop
{

counter1 += 5;
counter2 = counter1 * 3;
printf("DO: counter1 = %d, counter2 = %d\n", counter1, counter2);

} while(counter1 <= 100); //Write closing line of loop - test counter1
//end of do...while block 

Solution: Step 3



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1951224 CPL

Lab 07
Conclusions

C Provides three basic looping structures
for – checks loop condition at top, 
automatically executes iterator at bottom
while – checks loop condition at top, you must 
create iterator if needed
do…while – checks loop condition at bottom, 
you must create iterator if needed



© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL Slide      
196

Section 1.10
Functions



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1971224 CPL

drink()
{
...
be_merry();
return;

}

be_merry()
{
...
return;

}

eat()
{
...
return;

}

main()
{
...
eat();
...
drink();
...

}

Functions
Program Structure



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1981224 CPL

Definition

Functions
What is a function?

FunctionsFunctions are self contained program segments designed are self contained program segments designed 
to perform a specific, well defined task.to perform a specific, well defined task.

All C programs have one or more functions
The main() function is required
Functions can accept parameters from the 
code that calls them
Functions usually return a single value
Functions help to organize a program into 
logical, manageable segments



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  1991224 CPL

Functions in C are conceptually like an 
algebraic function from math class…

If you pass a value of 7 to the function: 
f(7), the value 7 gets "copied" into x and 
used everywhere that  x exists within the 
function definition: f(7) = 72 + 4*7 + 3 = 80

Functions
Remember Algebra Class?

f(f(xx) = ) = xx22 + 4+ 4xx +3+3Function NameFunction Name

Function ParameterFunction Parameter

Function DefinitionFunction Definition



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2001224 CPL

Syntax

Functions
Definitions

typetype identifieridentifier((typetype11 argarg11,,……,,typetypenn argargnn))
{{
declarationsdeclarations
statementsstatements
returnreturn expressionexpression;;

}}

Data type ofData type of
return return expressionexpression

NameName
Parameter ListParameter List

(optional)(optional)

Return Value (optional)Return Value (optional)HeaderHeader

BodyBody



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2011224 CPL

Example – A more efficient version

Example

Functions
Function Definitions: Syntax Examples

intint maximummaximum((intint xx,, intint yy))
{{

intint zz;;

z z = (= (x x >=>= yy) ?) ? x x :: yy;;
returnreturn zz;;

}}

intint maximummaximum((intint xx,, intint yy))
{{

returnreturn ((((x x >=>= yy) ?) ? x x :: yy););
}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2021224 CPL

Syntax

Functions
Function Definitions: Return Data Type

A function's type must match the type of 
data in the return expression

typetype identifieridentifier((typetype11 argarg11,,……,,typetypenn argargnn))
{{

declarationsdeclarations
statementsstatements
returnreturn expressionexpression;;

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2031224 CPL

Example

Functions
Function Definitions: Return Data Type

A function may have multiple return 
statements, but only one will be executed 
and they must all be of the same type

intint biggerbigger((intint aa,, intint bb))
{{

ifif ((a a >> bb))
returnreturn 11;;

elseelse
returnreturn 00;;

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2041224 CPL

Example

voidvoid identifieridentifier((typetype11 argarg11,,……,,typetypenn argargnn))
{{

declarationsdeclarations
statementsstatements
returnreturn;;

}}
returnreturn;; may be omitted if may be omitted if 
nothing is being returnednothing is being returned

Functions
Function Definitions: Return Data Type

The function type is void if:
The return statement has no expression
The return statement is not present at all

This is sometimes called a procedure 
function since nothing is returned



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2051224 CPL

Syntax
typetype identifieridentifier((typetype11 argarg11,,……,,typetypenn argargnn))
{{

declarationsdeclarations
statementsstatements
returnreturn expressionexpression;;

}}

Functions
Function Definitions: Parameters

A function's parameters are declared just 
like ordinary variables, but in a comma 
delimited list inside the parentheses
The parameter names are only valid inside 
the function (local to the function)

Function ParametersFunction Parameters



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2061224 CPL

Functions
Function Definitions: Parameters

Parameter list may mix data types
int foo(int x, float y, char z)

Parameters of the same type must be 
declared separately – in other words:
int maximum(int x, y) will not work
int maximum(int x, int y) is correct

Example
intint maximummaximum((intint xx,, intint yy))
{{

returnreturn ((((x x >=>= yy) ?) ? x x :: yy););
}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2071224 CPL

Functions
Function Definitions: Parameters

If no parameters are required, use the 
keyword void in place of the parameter 
list when defining the function

Example
typetype identifieridentifier((voidvoid))
{{

declarationsdeclarations
statementsstatements
return return expressionexpression;;

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2081224 CPL

Function Call Syntax

Functions
How to Call / Invoke a Function

No parameters and no return valueNo parameters and no return value
foofoo();();

No parameters, but with a return valueNo parameters, but with a return value
x x == foofoo();();

With parameters, but no return valueWith parameters, but no return value
foofoo((aa,, bb););

With parameters and a return valueWith parameters and a return value
x x == foofoo((aa,, bb););



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2091224 CPL

Functions
Function Prototypes

Just like variables, a function must be 
declared before it may be used
Declaration must occur before main() or 
other functions that use it
Declaration may take two forms:

The entire function definition
Just a function prototype – the function 
definition itself may then be placed anywhere 
in the program



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2101224 CPL

Function prototypes may be take on two 
different formats:

An exact copy of the function header:

Like the function header, but without the 
parameter names – only the types need be 
present for each parameter:

Functions
Function Prototypes

Example – Function Prototype 1

intint maximummaximum((intint xx,, intint yy););

Example – Function Prototype 2

intint maximummaximum((intint,, intint););



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2111224 CPL

Example 1

Functions
Declaration and Use: Example 1

intint aa == 55,, bb == 1010,, cc;;

intint maximummaximum((intint xx,, intint yy))
{{

returnreturn ((((x x >=>= yy) ?) ? x x :: yy););
}}

intint mainmain((voidvoid))
{{

c c == maximummaximum((aa,, bb););
printfprintf(("The"The max is %max is %dd\\nn"",, cc))

}}

Function is Function is 
declareddeclared and and 
defineddefined beforebefore it it 
is used in main()is used in main()



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2121224 CPL

Example 2

Functions
Declaration and Use: Example 2

intint aa == 55,, bb == 1010,, cc;;

intint maximummaximum((intint xx,, intint yy););

intint mainmain((voidvoid))
{{

c c == maximummaximum((aa,, bb););
printfprintf(("The"The max is %max is %dd\\nn"",, cc))

}}

intint maximummaximum((intint xx,, intint yy))
{{

returnreturn ((((x x >=>= yy) ?) ? x x :: yy););
}}

Function is Function is 
defineddefined afterafter it is it is 
used in main()used in main()

Function is Function is 
declareddeclared with with 
prototype prototype beforebefore
use in main()use in main()



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2131224 CPL

Functions
Passing Parameters by Value

Parameters passed to a function are 
passed by value
Values passed to a function are copied 
into the local parameter variables
The original variable that is passed to a 
function cannot be modified by the 
function since only a copy of its value was 
passed



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2141224 CPL

Example

Functions
Passing Parameters by Value

The The valuevalue of of aa is is copiedcopied into into xx..
The The valuevalue of of bb is is copiedcopied into into yy..
The function does not change The function does not change 
the value of the value of aa or or bb..

intint aa,, bb,, cc;;

intint foofoo((intint xx,, intint yy))
{{

x x == x x ++ (++(++yy););
returnreturn xx;;

}}

intint mainmain((voidvoid))
{{

aa == 55;;
bb == 1010;;
c c == foofoo((aa,, bb););

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2151224 CPL

Example

Functions
Recursion

A function can call itself repeatedly
Useful for iterative computations (each 
action stated in terms of previous result)
Example: Factorials  (5! = 5 * 4 * 3 * 2 * 1)

long long intint factorial(factorial(intint nn))
{{

if if ((n n <=<= 11))
returnreturn((11););

elseelse
returnreturn((nn ** factorial(factorial(nn -- 11))););

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2161224 CPL

Functions
Evaluation of Recursive Functions

Evaluation of 5!
(based on code from previous slide)

11[0] 1! = = 1
2 * 1!2 * 1![1] 2! = = 2 * 1 = 2
3 * 2!3 * 2![2] 3! = = 3 * 2 = 6
4 * 3!4 * 3![3] 4! = = 4 * 6 = 24
5 * 4!5 * 4![4] 5! = = 5 * 24 = 120

Recursive 
iterations of 

function

Result 
evaluated from 
TOS downward

Partial results 
pushed on stack

Factorial term 
replaced with result 
of expression above

Conceptual evaluation of recursive function



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2171224 CPL

Functions and Scope
Parameters

A function's parameters are local to the 
function – they have no meaning outside 
the function itself
Parameter names may have the same 
identifier as a variable declared outside 
the function – the parameter names will 
take precedence inside the function

int n;
long int factorial(int n){…}

These are not the same n.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2181224 CPL

Example

Functions and Scope
Variables Declared Within a Function

Variables declared within a function block 
are local to the function

intint xx,, yy,, zz;;

intint foofoo((intint nn))
{{

intint aa;;

aa +=+= nn;;
}}

The The nn refers to the function parameter refers to the function parameter nn

The The aa refers to the refers to the aa declared locally declared locally 
within the function bodywithin the function body



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2191224 CPL

Example

Functions and Scope
Variables Declared Within a Function

Variables declared within a function block 
are not accessible outside the function

This will generate an error.  This will generate an error.  aa may not may not 
be accessed outside of the function be accessed outside of the function 
where it was declared.where it was declared.

intint xx;;
intint foofoo((intint nn))
{{

intint aa;;
returnreturn ((aa +=+= n)n);;

}}
intint mainmain((voidvoid))
{{

x x == foofoo((55););
x x == aa;;

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2201224 CPL

Example

Functions and Scope
Global versus Local Variables

intint x x == 55;;

intint foofoo((intint yy))
{{

intint z z == 11;;
returnreturn ((x x ++ y y ++ zz););

}}

intint mainmain((voidvoid))
{{

intint a a == 22;;
x x == foofoo((aa););
a a == foofoo((xx););

}}

x can see be seen by everybodyxx can see be seen by everybodycan see be seen by everybody

foo's local parameter is y
foo's local variable is z
foo cannot see main's a
foo can see x

foofoo's's local parameter is local parameter is yy
foofoo's's local variable is local variable is zz
foofoo cannot see cannot see mainmain's 's aa
foofoo can see can see xx

main's local variable is a
main cannot see foo's y or z
main can see x

mainmain's local variable is 's local variable is aa
mainmain cannot see cannot see foofoo's's yy or or zz
mainmain can see can see xx



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2211224 CPL

Functions and Scope
Parameters

"Overloading" variable names:

A locally defined identifier takes precedence over a 
globally defined identifier.

intint nn;;

intint foofoo((intint nn))
{{

……
y y +=+= nn;;
……

}}

n Declared Locally and Globally n Declared Globally Only

intint nn;;

intint foofoo((intint xx))
{{

……
y y +=+= nn;;
……

}}

local local nn
hides hides 
global global nn



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2221224 CPL

Example

intint nn;;

intint foofoo((intint nn))
{{

y y +=+= nn;;
}}

intint barbar((intint nn))
{{

z z *=*= nn;;
}}

Functions and Scope
Parameters

Different functions 
may use the same 
parameter names
The function will 
only use its own 
parameter by that 
name



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2231224 CPL

Functions and Scope
#define Within a Function

Running this code will 
result in the following 
output in the Uart1 IO 
window:

Why?
Remember: #define is 
used by the preprocessor 
to do text substitution 
before the code is 
compiled.

#define#define xx 22

voidvoid test(test(voidvoid))
{{

#define#define xx 55
printfprintf(("%d"%d\\nn"",, xx););

}}

voidvoid mainmain((voidvoid))
{{

printfprintf(("%d"%d\\nn"",, xx););
testtest();();

}}

Example

55
55



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2241224 CPL

Functions
Historical Note

C originally defined functions like this:

Do not use the old method – use the new 
one only:

intint maximummaximum((xx,, yy))
intint xx,, intint yy
{{

returnreturn ((((x x >=>= yy) ?) ? x x :: yy););
}}

intint maximummaximum((intint xx,, intint yy))
{{

returnreturn ((((x x >=>= yy) ?) ? x x :: yy););
}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2251224 CPL

On the CDOn the CD
……\\101_ECP101_ECP\\Lab08Lab08\\Lab08.mcwLab08.mcw

Lab 08
Functions



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2261224 CPL

Lab 08
Functions

Open the project’s workspace:
On the lab PCOn the lab PC
C:C:\\RTCRTC\\101_ECP101_ECP\\Lab08Lab08\\Lab08.mcwLab08.mcw

11 Open MPLABOpen MPLAB®® IDE and select IDE and select Open Open 
WorkspaceWorkspace…… from the from the FileFile menu.menu.
Open the file listed above.Open the file listed above.

If you already have a project open in If you already have a project open in 
MPLAB IDE, close it by selecting MPLAB IDE, close it by selecting 
Close WorkspaceClose Workspace from the from the FileFile menu menu 
before opening a new one.before opening a new one.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2271224 CPL

Lab 08
Functions

/*############################################################################
# STEP 1: Write two function prototypes based on the following information:
#         + Function Name: multiply_function()
#           - Parameters: int x, int y
#           - Return type: int
#         + Function Name: divide_function()
#           - Parameters: float x, float y
#           - Return type: float 
############################################################################*/

int multiply_function( int x, int y);       //multiply_function() prototype

float divide_function( float x, float y );  //divide_function() prototype

Solution: Step 1



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2281224 CPL

Lab 08
Functions

/*############################################################################
# STEP 2: Call the multiply_function() and divide_function().
#         (a) Pass the variables intVariable1 and intVariable2 to the
#             multiply_function().
#         (b) Store the result of multiply_function() in the variable "product".
#         (c) Pass the variables floatVariable1 and floatVariable2 to the
#             divide_function().
#         (d) Store the result of divide_function() in the variable "quotient".
############################################################################*/

//Call multiply_function
product = multiply_function( intVariable1 , intVariable2 );

//Call divide_function
quotient = divide_function( floatVariable1 , floatVariable2 );

// intQuotient will be 0 since it is an integer
intQuotient = divide_function( floatVariable1 , floatVariable2 );

Solution: Step 2



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2291224 CPL

Lab 08
Functions

/*############################################################################
# STEP 3: Write the function multiply_function().  Use the function prototype
#         you wrote in STEP 1 as the function header.  In the body, all you
#         need to do is return the product of the two input parameters (x * y)
############################################################################*/
//Function Header
int multiply_function( int x, int y)
{

return (x * y);                   //Function Body
}

/*############################################################################
# STEP 4: Write the function divide_function().  Use the function prototype
#         you wrote in STEP 1 as the function header.  In the body, all you
#         need to do is return the quotient of the two input parameters (x / y)
############################################################################*/
//Function Header
float divide_function( float x, float y )
{

return (x / y);                  //Function Body
}

Solution: Steps 3 and 4



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2301224 CPL

Lab 08
Conclusions

Functions provide a way to modularize 
code
Functions make code easier to maintain
Functions promote code reuse



© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL Slide      
231

Section 1.11
Multi-File Projects and

Storage Class Specifiers



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2321224 CPL

Storage Class Specifiers
Scope and Lifetime of Variables

Scope and lifetime of a variable depends 
on its storage class:

Automatic Variables
Static Variables
External Variables
Register Variables

Scope refers to where in a program a 
variable may be accessed
Lifetime refers to how long a variable will 
exist or retain its value



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2331224 CPL

Storage Class Specifiers
Automatic Variables

Local variables declared inside a function
Created when function called
Destroyed when exiting from function

auto keyword usually not required – local 
variables are automatically automatic*
Typically created on the stack

int foo(int x, int y)
{

int a, b;
... Automatic Variables

*Except when the compiler provides an option to make parameters and locals static by default.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2341224 CPL

Storage Class Specifiers
auto Keyword with Variables

auto is almost never used
Many books claim it has no use at all 
Some compilers still use auto to explicitly 
specify that a variable should be allocated 
on the stack when a different method of 
parameter passing is used by default

int foo(auto int x, auto int y)
{

... ;
}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2351224 CPL

int x;

int main(void)
{

...

Storage Class Specifiers
Static Variables

Given a permanent address in memory
Exist for the entire life of the program

Created when program starts
Destroyed when program ends

Global variables are always static (cannot 
be made automatic using auto)

Global variable is always static



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2361224 CPL

Storage Class Specifiers
static Keyword with Variables

A variable declared as static inside a 
function retains its value between function 
calls (not destroyed when exiting function)
Function parameters cannot be static
with some compilers (MPLAB® C30)

a will remember its value 
from the last time the 
function was called.
If given an initial value, it 
is only initialized when 
first created – not during 
each function call

int foo(int x)
{

static int a = 0;
...
a += x;
return a;

}  



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2371224 CPL

Storage Class Specifiers
External Variables

Variables that are defined outside the 
scope where they are used
Still need to be declared within the scope 
where they are used
extern keyword used to tell compiler that 
a variable defined elsewhere will be used 
within the current scope

extern type identifier;

extern int x;

External Variable 
Declaration Syntax:

External Variable 
Declaration Example:



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2381224 CPL

Example

Storage Class Specifiers
External Variables

A variable declared as extern within a 
function is analogous to a function 
prototype – the variable may be defined
outside the function after it is used

intint foofoo((intint xx))
{{

extern extern intint aa;;
......
returnreturn aa;;

}}

intint aa;;



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2391224 CPL

SomeFileInProject.cMain.c

Storage Class Specifiers
External Variables

A variable declared as extern outside of 
any function is used to indicate that the 
variable is defined in another source file –
memory only allocated when it's defined

extern int x;

int main(void)
{

x = 5;
...

}

int x;

int foo(void)
{

...
}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2401224 CPL

Storage Class Specifiers
Register Variables

Variables placed in a processor's 
"hardware registers" for higher speed 
access than with external RAM (mostly 
used for microprocessor-based systems)
Doesn't usually make sense in embedded 
microcontroller system where RAM is 
integrated into processor package
May be done with PIC® MCU/dsPIC® DSC, 
but it is architecture/compiler specific…



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2411224 CPL

Storage Class Specifiers
Scope of Functions

Scope of a function depends on its 
storage class:

Static Functions
External Functions

Scope of a function is either local to the 
file where it is defined (static) or globally 
available to any file in a project (external)



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2421224 CPL

SomeFileInProject.cMain.c

Storage Class Specifiers
External Functions

Functions by default have global scope 
within a project 
extern keyword not required, but function 
prototype is required in calling file (or .h)

int foo(void);

int main(void)
{

...
x = foo();

}

int foo(void)
{

...
}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2431224 CPL

SomeFileInProject.cMain.c

Storage Class Specifiers
Static Functions

If a function is declared as static, it will 
only be available within the file where it 
was declared (makes it a local function)

int foo(void);

int main(void)
{

...
x = foo();

}

static int foo(void)
{

...
}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2441224 CPL

Storage Class Specifiers
Library Files and Header Files

#include <LibFile.h>

int x;

int main(void)
{

x = foo();
myVar = x;

}

Main.c

int myVar;

int foo(void)
{

…
}

LibFile.c

extern int myVar;

int foo(void);

LibFile.h

DEFINITIONSDEFINITIONS

DECLARATIONSDECLARATIONS

USEUSE

INCLUDE 
DECLARATIONS

INCLUDE 
DECLARATIONS



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2451224 CPL

On the CDOn the CD
……\\101_ECP101_ECP\\Lab09Lab09\\Lab09.mcwLab09.mcw

Lab 09
Multi-File Projects



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2461224 CPL

Lab 09
Multi-File Projects

Open the project’s workspace:
On the lab PCOn the lab PC
C:C:\\RTCRTC\\101_ECP101_ECP\\Lab09Lab09\\Lab09.mcwLab09.mcw

11 Open MPLABOpen MPLAB®® IDE and select IDE and select Open Open 
WorkspaceWorkspace…… from the from the FileFile menu.menu.
Open the file listed above.Open the file listed above.

If you already have a project open in If you already have a project open in 
MPLAB IDE, close it by selecting MPLAB IDE, close it by selecting 
Close WorkspaceClose Workspace from the from the FileFile menu menu 
before opening a new one.before opening a new one.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2471224 CPL

Lab 09
Multi-File Projects

/*############################################################################
# STEP 1a: Add variable declarations to make the variables defined in
#          File1_09.c available to any C source file that includes this
#          header file. (intVariable1, intVariable2, product)
############################################################################*/
//Reference to externally defined "intVariable1"
extern int intVariable1;
//Reference to externally defined "intVariable2"
extern int intVariable2;
//Reference to externally defined "product"
extern int product;

/*###############################################################################
# STEP 1b: Add a function prototype to make multiply_function() defined in
#          File1_09.c available to any C source file that includes this header
#          file.
###############################################################################*/
//Function prototype for multiply_function()
int multiply_function(int x, int y);

Solution: Step 1a and 1b (File1_09.h)



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2481224 CPL

Lab 09
Multi-File Projects

/*############################################################################
# STEP 2a: Add variable declarations to make the variables defined in
#          File2_09.c available to any C source file that includes this header
#          file.(floatVariable1, floatVariable2, quotient, intQuotient)
############################################################################*/
//Reference to externally defined "floatVariable1"
extern float floatVariable1;
//Reference to externally defined "floatVariable2"
extern float floatVariable2;
//Reference to externally defined "quotient"
extern float quotient;
//Reference to externally defined "intQuotient"
extern int intQuotient;

/*############################################################################
# STEP 2b: Add a function prototype to make divide_function() defined in
#          File2_09.c available to any C source file that includes this header
#          file.
############################################################################*/
//Function prototype for divide_function()
float divide_function(float x, float y );

Solution: Step 2a and 2b (File2_09.h)



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2491224 CPL

Lab 09
Conclusions

Multi-file projects take the concept of 
functions further, by providing an 
additional level of modularization
Globally declared variables and all normal 
functions are externally available if extern 
declarations and function prototypes are 
available
Static functions are not available 
externally



© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL Slide      
250

Section 1.12
Arrays



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2511224 CPL

Definition

Arrays

Arrays:
May contain any number of elements
Elements must be of the same type
The index is zero based
Array size (number of elements) must be 
specified at declaration

ArraysArrays are variables that can store many items of the same are variables that can store many items of the same 
type.  The individual items known as type.  The individual items known as elementselements, are stored , are stored 
sequentially and are uniquely  identified by the array sequentially and are uniquely  identified by the array indexindex
(sometimes called a (sometimes called a subscriptsubscript).).



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2521224 CPL

Syntax

Example

size refers to the number of elements
size must be a constant integer

Arrays
How to Create an Array

intint a[10]a[10];    ;    // An array that can hold 10 integers// An array that can hold 10 integers

charchar s[25]s[25];   ;   // An array that can hold 25 characters// An array that can hold 25 characters

typetype arrayNamearrayName[[sizesize];];

Arrays are declared much like ordinary variables:



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2531224 CPL

Syntax

Example

Arrays
How to Initialize an Array at Declaration

intint aa[[55] =] = {{1010,, 2020,, 3030,, 4040,, 5050};};

charchar bb[[55] =] = {{'a''a',, 'b''b',, 'c''c',, 'd''d',, 'e''e'}; }; 

typetype arrayNamearrayName[[sizesize] = {] = {itemitem11,,……,,itemitemnn};};

Arrays may be initialized with a list when declared:

The items must all match the type of the array



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2541224 CPL

Example

Syntax

Arrays
How to Use an Array

intint ii,, aa[[1010];   ];   //An array that can hold 10 integers//An array that can hold 10 integers

forfor((ii == 00;; ii << 1010;; ii++) {++) {
aa[[ii] =] = 00;; //Initialize all array elements to 0//Initialize all array elements to 0

}}
aa[[44] =] = 4242;; //Set fifth element to 42//Set fifth element to 42

arrayNamearrayName[[indexindex]]

Arrays are accessed like variables, but with an index:

index may be a variable or a constant
The first element in the array has an index of 0
C does not provide any bounds checking



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2551224 CPL

Example

Syntax

Arrays
Creating Multidimensional Arrays

Arrays may have any number of dimensions
Three dimensions tend to be the largest used in 
common practice

intint aa[[1010][][1010];        ];        //10x10 array for 100 integers//10x10 array for 100 integers

floatfloat bb[[1010][][1010][][1010];  ];  //10x10x10 array for 1000 floats//10x10x10 array for 1000 floats

typetype arrayNamearrayName[[sizesize11]...[]...[sizesizenn];];

Add additional dimensions to an array declaration:



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2561224 CPL

Syntax

Example

Arrays
Initializing Multidimensional Arrays at Declaration

charchar aa[[33][][33] =] = {{{{'X''X',, 'O''O',, 'X''X'},},
{{'O''O',, 'O''O',, 'X''X'},},
{{'X''X',, 'X''X',, 'O''O'}};}};

intint bb[[22][][22][][22] = {{{] = {{{00, , 11},{},{22, , 33}},{{}},{{44, , 55},{},{66, , 77}}};}}};

typetype arrayNamearrayName[[sizesize00]]……[[sizesizenn] = ] = 
{{{{itemitem,,……,,itemitem},},

{{itemitem,,……,,itemitem}};}};

Arrays may be initialized with lists within a list:



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2571224 CPL

Arrays
Visualizing 2-Dimensional Arrays

6

a[0][0] = 0;
a[0][1] = 1;
a[0][2] = 2;
a[1][0] = 3;
a[1][1] = 4;
a[1][2] = 5;
a[2][0] = 6;
a[2][1] = 7;
a[2][2] = 8; y

x0

0

1

1

0 1

3 4

a[y][x]
Row, Column

Column

R
ow

R
ow

 0
R

ow
 1

2

5

7 82

2

R
ow

 2

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

int a[3][3] = {{0, 1, 2},
{3, 4, 5},
{6, 7, 8}};



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2581224 CPL

a[0][0][0] = 0;
a[0][0][1] = 1;
a[0][1][0] = 2;
a[0][1][1] = 3;
a[1][0][0] = 4;
a[1][0][1] = 5;
a[1][1][0] = 6;
a[1][1][1] = 7;

Arrays
Visualizing 3-Dimensional Arrays

z

y

x

0

1

0

0

1

1

0
1

2
3

4
5

7

a[z][y][x]
Plane, Row, Column

Plane

Column

R
ow

Pl
an

e 
0

Pl
an

e 
1

0,0,0
0,0,1

0,1,0

0,1,1

1,1,1

1,0,1

int a[2][2][2] = {{{0, 1},{2, 3}},
{{4, 5},{6, 7}}};



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2591224 CPL

Arrays
Example of Array Processing

/**************************************************/**************************************************
* Print out 0 to 90 in increments of 10* Print out 0 to 90 in increments of 10
**************************************************/**************************************************/
intint mainmain((voidvoid))
{{

intint i i == 00;;
intint aa[[1010] = {] = {00,,11,,22,,33,,44,,55,,66,,77,,88,,99};};

whilewhile ((i i << 1010))
{{

aa[[ii] *=] *= 1010;;
printfprintf(("%d"%d\\nn"", , aa[[ii]);]);
ii++;++;

}}

whilewhile ((11););
}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2601224 CPL

Definition

Strings
Character Arrays and Strings

Strings:
Are enclosed in double quotes "string"
Are terminated by a null character '\0'
Must be manipulated as arrays of characters 
(treated element by element)
May be initialized with a string literal

StringsStrings are arrays of are arrays of charchar whose last element is a null whose last element is a null 
character character ''\\0'0' with an ASCII value of 0.  C has no native with an ASCII value of 0.  C has no native 
string data type, so strings must always be treated as string data type, so strings must always be treated as 
character arrays.character arrays.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2611224 CPL

Syntax

Example

Strings
Creating a String Character Array

charchar str1str1[[1010];      ];      //Holds 9 characters plus '//Holds 9 characters plus '\\0'0'

charchar str2str2[[66];       ];       //Holds 5 characters plus '//Holds 5 characters plus '\\0'0'

charchar arrayNamearrayName[[lengthlength];];

Strings are created like any other array of char:

length must be one larger than the length of the string 
to accommodate the terminating null character '\0'
A char array with n elements holds strings with n-1 char



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2621224 CPL

Example

Syntax

Strings
How to Initialize a String at Declaration

charchar str1str1[] =[] = "Microchip""Microchip"; ; //10 chars "Microchip//10 chars "Microchip\\0"0"

charchar str2str2[[66] =] = "Hello""Hello";    ;    //6 chars "Hello//6 chars "Hello\\0"0"

//Alternative string declaration //Alternative string declaration –– size requiredsize required
charchar str3str3[[44] =] = {{'P''P',, 'I''I',, 'C''C',, ''\\0'0'};};

charchar arrayNamearrayName[] = [] = "Microchip""Microchip";;

Character arrays may be initialized with string literals:

Array size is not required
Size automatically determined by length of string
NULL character '\0' is automatically appended



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2631224 CPL

Syntax

Example

Strings
How to Initialize a String in Code

strstr[[00] =] = 'H''H'; ; 
strstr[[11] =] = 'e''e';;
strstr[[22] =] = 'l''l';;
strstr[[33] =] = 'l''l';;
strstr[[44] =] = 'o''o';;
strstr[[55] =] = ''\\0'0';;

arrayNamearrayName[[00] = ] = charchar11;;
arrayNamearrayName[[11] = ] = charchar22;;

arrayNamearrayName[[nn] = ] = ''\\0'0';;

In code, strings must be initialized element by element:

Null character '\0' must be appended manually



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2641224 CPL

Example

Strings
Comparing Strings

Strings cannot be compared using logical 
operators (==, !=, etc.)
Must use standard C library string 
manipulation functions
strcmp() returns 0 if strings equal

charchar strstr[] =[] = "Hello""Hello";;

if if ((!!strcmpstrcmp(( strstr, , "Hello""Hello"))))
printfprintf(("The"The string is string is \\"%"%ss\\".".\\nn"", , strstr););



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2651224 CPL

Functions
Array Parameters

Arrays are passed by reference rather than by 
value for greater efficiency
A pointer to the array, rather than the array itself 
is passed to the function

void WriteLCD(char greetings[]){…}
This declaration…

void WriteLCD(char *greetings){…}
…is equivalent to this declaration.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2661224 CPL

On the CDOn the CD
……\\101_ECP101_ECP\\Lab10Lab10\\Lab10.mcwLab10.mcw

Lab 10
Arrays



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2671224 CPL

Lab 10
Arrays

Open the project’s workspace:
On the lab PCOn the lab PC
C:C:\\RTCRTC\\101_ECP101_ECP\\Lab10Lab10\\Lab10.mcwLab10.mcw

11 Open MPLABOpen MPLAB®® IDE and select IDE and select Open Open 
WorkspaceWorkspace…… from the from the FileFile menu.menu.
Open the file listed above.Open the file listed above.

If you already have a project open in If you already have a project open in 
MPLAB IDE, close it by selecting MPLAB IDE, close it by selecting 
Close WorkspaceClose Workspace from the from the FileFile menu menu 
before opening a new one.before opening a new one.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2681224 CPL

Lab 10
Arrays

/*############################################################################
# STEP 1: Create two initialized arrays with 10 elements each named array1 and 
#         array2 (you may use the pre-defined constant ARRAY_SIZE as part of 
#         the array declaration).
#         The arrays should be initialized with the following values:
#         + array1: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
#         + array2: 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
#         Note: the elements are all of type int
############################################################################*/
// array1 declaration & definition
int array1[ARRAY_SIZE] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
// array2 declaration & definition
int array2[ARRAY_SIZE] = {9, 8, 7, 6, 5, 4, 3, 2, 1, 0};

Solution: Step 1



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2691224 CPL

Lab 10
Arrays

/*############################################################################
# STEP 2: Pass the two arrays you declared above (array1 & array2) to the
#         function add_function() (see its definition below).  Store the
#         result of the function call in the array result[].  The idea here is
#         to add each corresponding element of array1 and array2 and store the
#         result in result[].  In other words, add the first element of
#         array1[] to the first element of array2[] and store the result in
#         the first element of result[].  Next add the second elements…
############################################################################*/
// result = sum of elements of array1 & array2
result[i] = add_function(array1[i], array2[i]);
i++;

Solution: Step 2



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2701224 CPL

Lab 10
Conclusions

Arrays may be used to store a group of 
related variables of the same type under a 
common name
Individual elements are accessed by using 
the array index in conjunction with the 
array name
Arrays may be used in many places that 
an ordinary variable would be used



© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL Slide      
271

Section 1.13
Data Pointers



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2721224 CPL

Pointers
A Variable's Address versus A Variable's Value

In some situations, we will want to work with a 
variable's address in memory, rather than the 
value it contains…

005A
Address

16-bit Data Memory 
(RAM)

0x0802

0x0804

0x0806

0x0808

0x0800

x

Variable stored 
at Address

0123

DEAD

BEEF

F00D

0456 0x080A

Variable name 
from C code

int x;

Value of 
variable x
= 0x0123

Address of 
variable x
= 0x0802



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2731224 CPL

Pointers
What are pointers?

A pointer is a variable or constant that holds the 
address of another variable or function

FFFF
Address

16-bit Data Memory 
(RAM)

0x0802

0x0804

0x0806

0x0808

0x0800

x

p

Variable at 
Address

0123

FFFF

0802

FFFF

FFFF 0x080A

Integer Variable:

Pointer Variable:



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2741224 CPL

Pointers
What do they do?

A pointer allows us to indirectly access a 
variable (just like indirect addressing in assembly language)

005A
Address

16-bit Data Memory 
(RAM)

0x0802

0x0804

0x0806

0x0808

0x0800

x 0123

DEAD

0802

F00D

0456 0x080A

p

x = 0x0123;

*p = 0x0123;

Direct Access
via x

Direct Access
via x

Indirect Access
via *p

Indirect Access
via *p

p points to x



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2751224 CPL

Pointers
Why would I want to do that?

Pointers make it possible to write a very 
short loop that performs the same task on 
a range of memory locations / variables.

Example: Data Buffer

//Point to RAM buffer starting address//Point to RAM buffer starting address
charchar **bufPtrbufPtr == &&bufferbuffer;;

whilewhile ((((DataAvailableDataAvailable)) && (*&& (*bufPtrbufPtr !=!= '/0''/0'))))
{{

//Read byte from UART and write it to RAM buffer//Read byte from UART and write it to RAM buffer
ReadUARTReadUART((bufPtrbufPtr););
//Point to next available byte in RAM buffer//Point to next available byte in RAM buffer
bufPtrbufPtr++;++;

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2761224 CPL

Pointers
Why would I want to do that?

Example: Data Buffer

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08BC0x08BC

0x08BE0x08BE

0x08C00x08C0

0x08C20x08C2

0x08C40x08C4

0x08C60x08C6

0x08BA0x08BA

0x08C80x08C8

0123

4567

89AB

CDEF

1357

9BDF

0246

8ACE

PseudoPseudo--code:code:
(1)(1) Point arrow to first Point arrow to first 

address of bufferaddress of buffer
(2)(2) Write data from UART to Write data from UART to 

location pointed to by location pointed to by 
arrowarrow

(3)(3) Move arrow to point to Move arrow to point to 
next address in buffernext address in buffer

(4)(4) Repeat until data from Repeat until data from 
UART is 0, or buffer is full UART is 0, or buffer is full 
(arrow points to last (arrow points to last 
address of buffer)address of buffer)

RAM buffer allocated over RAM buffer allocated over 
a range of addressesa range of addresses
(perhaps an array)(perhaps an array)



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2771224 CPL

Pointers
Where else are they used?

Used in conjunction with dynamic memory 
allocation (creating variables at runtime)
Provide method to pass arguments by reference
to functions
Provide method to pass more than one piece of 
information into and out of a function
A more efficient means of accessing arrays and 
dealing with strings



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2781224 CPL

Example

Syntax

Pointers
How to Create a Pointer Variable

intint **iPtriPtr;        ;        // Create a pointer to // Create a pointer to intint

float float **fPtrfPtr;      ;      // Create a pointer to float// Create a pointer to float

typetype **ptrNameptrName;;

In the context of a declaration, the * merely indicates 
that the variable is a pointer
type is the type of data the pointer may point to
Pointer usually described as “a pointer to type”



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2791224 CPL

Example

Syntax

Pointers
How to Create a Pointer Type with typedef

typedeftypedef intint **intPtrintPtr;  ;  // Create pointer to // Create pointer to intint typetype

intPtrintPtr pp;             ;             // Create pointer to // Create pointer to intint
// Equivalent to: // Equivalent to: intint *p;*p;

typedeftypedef typetype **typeNametypeName;;

A pointer variable can now be declared as type 
typeName which is a synonym for type
The * is no longer needed since typeName explicitly 
identifies the variable as a pointer to type

No No ** is usedis used



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2801224 CPL

To set a pointer to point to another 
variable, we use the & operator (address 
of), and the pointer variable is used 
without the dereference operator *:

This assigns the address of the variable x
to the pointer p (p now points to x)
Note: p must be declared to point to the 
type of x (e.g. int x; int *p;)

Pointers
Initialization

p p = &= &xx;;



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2811224 CPL

Pointers
Usage

When accessing the variable pointed to by 
a pointer, we use the pointer with the 
dereference operator *:

This assigns to the variable y, the value of 
what p is pointing to (x from the last slide)
Using *p, is the same as using the variable 
it points to (e.g. x)

y y = *= *pp;;



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2821224 CPL

Example

Pointers
Another Way To Look At The Syntax

&x is a constant pointer
It represents the address of x
The address of x will never change

p is a variable pointer to int
It can be assigned the address of any int
It may be assigned a new address any time

intint xx,, **pp;; ////intint and a pointer to and a pointer to intint

p p == &x&x;; //Assign p the address of x//Assign p the address of x
**p p == 55;; //Same as x = 5;//Same as x = 5;



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2831224 CPL

Example

Pointers
Another Way To Look At The Syntax

*p represents the data pointed to by p
*p may be used anywhere you would use x
* is the dereference operator, also called the 
indirection operator
In the pointer declaration, the only significance of * is 
to indicate that the variable is a pointer rather than an 
ordinary variable

intint xx,, **pp;; //1 //1 intint, 1 pointer to , 1 pointer to intint

p p == &&xx;; //Assign p the address of x//Assign p the address of x
*p*p = 5= 5;; //Same as x = 5;//Same as x = 5;



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2851224 CPL

Example

Pointers
How Pointers Work

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08BC0x08BC

0x08BE0x08BE

0x08C00x08C0

0x08C20x08C2

0x08C40x08C4

0x08C60x08C6

0x08BA0x08BA

{{
intint xx,, yy;;
intint **pp;;

x x == 0xDEAD0xDEAD;;
y y == 0xBEEF0xBEEF;;
p p == &&xx;;

**p p == 0x01000x0100;;
p p == &&yy;;
**p p == 0x02000x0200;;

}}

xx

yy

pp

Variable at Variable at 
AddressAddress

0x08C80x08C8

0000

0000

0000

0000

0000

0000

0000

0000



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2861224 CPL

Example

Pointers
How Pointers Work

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08BC0x08BC

0x08BE0x08BE

0x08C00x08C0

0x08C20x08C2

0x08C40x08C4

0x08C60x08C6

0x08BA0x08BA

xx

yy

pp

Variable at Variable at 
AddressAddress

0x08C80x08C8

0000

DEAD

0000

0000

0000

0000

0000

0000

{{
intint xx,, yy;;
intint **pp;;

xx == 0xDEAD0xDEAD;;
y y == 0xBEEF0xBEEF;;
p p == &&xx;;

**p p == 0x01000x0100;;
p p == &&yy;;
**p p == 0x02000x0200;;

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2871224 CPL

Example

Pointers
How Pointers Work

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08BC0x08BC

0x08BE0x08BE

0x08C00x08C0

0x08C20x08C2

0x08C40x08C4

0x08C60x08C6

0x08BA0x08BA

xx

yy

pp

Variable at Variable at 
AddressAddress

0x08C80x08C8

0000

DEAD

BEEF

0000

0000

0000

0000

0000

{{
intint xx,, yy;;
intint **pp;;

x x == 0xDEAD0xDEAD;;
yy == 0xBEEF0xBEEF;;
p p == &&xx;;

**p p == 0x01000x0100;;
p p == &&yy;;
**p p == 0x02000x0200;;

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2881224 CPL

Example

Pointers
How Pointers Work

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08BC0x08BC

0x08BE0x08BE

0x08C00x08C0

0x08C20x08C2

0x08C40x08C4

0x08C60x08C6

0x08BA0x08BA

xx

yy

pp

Variable at Variable at 
AddressAddress

0x08C80x08C8

0000

DEAD

BEEF

08BC

0000

0000

0000

0000

{{
intint xx,, yy;;
intint **pp;;

x x == 0xDEAD0xDEAD;;
y y == 0xBEEF0xBEEF;;
pp == &x&x;;

**p p == 0x01000x0100;;
p p == &&yy;;
**p p == 0x02000x0200;;

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2891224 CPL

Example

Pointers
How Pointers Work

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08BC0x08BC

0x08BE0x08BE

0x08C00x08C0

0x08C20x08C2

0x08C40x08C4

0x08C60x08C6

0x08BA0x08BA

xx

yy

pp

Variable at Variable at 
AddressAddress

0x08C80x08C8

0000

0100

BEEF

08BC

0000

0000

0000

0000

{{
intint xx,, yy;;
intint **pp;;

x x == 0xDEAD0xDEAD;;
y y == 0xBEEF0xBEEF;;
p p == &&xx;;

*p*p == 0x01000x0100;;
p p == &&yy;;
**p p == 0x02000x0200;;

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2901224 CPL

Example

Pointers
How Pointers Work

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08BC0x08BC

0x08BE0x08BE

0x08C00x08C0

0x08C20x08C2

0x08C40x08C4

0x08C60x08C6

0x08BA0x08BA

xx

yy

pp

Variable at Variable at 
AddressAddress

0x08C80x08C8

0000

0100

BEEF

08BE

0000

0000

0000

0000

{{
intint xx,, yy;;
intint **pp;;

x x == 0xDEAD0xDEAD;;
y y == 0xBEEF0xBEEF;;
p p == &&xx;;

**p p == 0x01000x0100;;
pp == &y&y;;
**p p == 0x02000x0200;;

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2911224 CPL

Example

Pointers
How Pointers Work

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08BC0x08BC

0x08BE0x08BE

0x08C00x08C0

0x08C20x08C2

0x08C40x08C4

0x08C60x08C6

0x08BA0x08BA

xx

yy

pp

Variable at Variable at 
AddressAddress

0x08C80x08C8

0000

0100

0200

08BE

0000

0000

0000

0000

{{
intint xx,, yy;;
intint **pp;;

x x == 0xDEAD0xDEAD;;
y y == 0xBEEF0xBEEF;;
p p == &&xx;;

**p p == 0x01000x0100;;
p p == &&yy;;
*p*p == 0x02000x0200;;

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2921224 CPL

Pointers and Arrays
A Quick Reminder…

Array elements occupy consecutive memory 
locations

Pointers can provide an alternate method for 
accessing array elements

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08000x0800

0x08020x0802

0x08040x0804

0x07FE0x07FE

xx[[00]]

0x08060x0806

xx[[11]]
xx[[22]]

intint xx[[33] = {] = {11,,22,,33};};
FFFFFFFF

00010001

00020002

00030003

FFFFFFFF



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2931224 CPL

Pointers and Arrays
Initializing a Pointer to an Array

The array name is the same thing as the 
address of its first (0th) element

If we declare the following array and pointer variable:

We can initialize the pointer to point to the array using any
one of these three methods:

intint xx[[55] = {] = {11,,22,,33,,44,,55};};
intint **pp;;

p p == xx;; //Works only for arrays!//Works only for arrays!
p p == &&xx;; //Works for arrays or variables//Works for arrays or variables
p p == &&xx[[00];]; //This one is the most obvious//This one is the most obvious



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2941224 CPL

Incrementing a pointer will move it to the 
next element of the array

More on this in just a bit…

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08000x0800

0x08020x0802

0x08040x0804

0x07FE0x07FE

xx[[00]]

0x08060x0806

xx[[11]]
xx[[22]]

FFFFFFFF

00010001

00020002

00030003

FFFFFFFF

Pointers and Arrays
A Preview of Pointer Arithmetic

intint xx[[33] = {] = {11,,22,,33};};
intint **pp;;

p p = &= &xx;;
pp++;++;

pp



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2951224 CPL

Incrementing a pointer will move it to the 
next element of the array

More on this in just a bit…

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08000x0800

0x08020x0802

0x08040x0804

0x07FE0x07FE

x[0]x[0]

0x08060x0806

xx[[11]]
xx[[22]]

FFFFFFFF

00010001

00020002

00030003

08000800

Pointers and Arrays
A Preview of Pointer Arithmetic

intint xx[[33] = {] = {11,,22,,33};};
intint **pp;;

pp = &= &xx;;
pp++;++;

pp



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2961224 CPL

Incrementing a pointer will move it to the 
next element of the array

More on this in just a bit…

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08000x0800

0x08020x0802

0x08040x0804

0x07FE0x07FE

xx[[00]]

0x08060x0806

x[1]x[1]
xx[[22]]

FFFFFFFF

00010001

00020002

00030003

08020802

Pointers and Arrays
A Preview of Pointer Arithmetic

intint xx[[33] = {] = {11,,22,,33};};
intint **pp;;

p p = &= &xx;;
pp++;++;

pp



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2971224 CPL

Pointer Arithmetic
Incrementing Pointers

Incrementing or decrementing a pointer 
will add or subtract a multiple of the 
number of bytes of its type
If we have:

floatfloat xx;;
floatfloat **p p = &= &xx;;
pp++;++;

We will get p = &x + 4 since a float
variable occupies 4 bytes of memory



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2981224 CPL

Example

float a[4]

float a[5]

float a[6]

float a[7]

float a[8]

Pointer Arithmetic
Incrementing Pointers

float a[0]

float a[1]

float a[2]

float a[3]

ptr = &a;
0x0050
0x0052
0x0054
0x0056
0x0058
0x005A
0x005C
0x005E
0x0060
0x0062
0x0064
0x0066
0x0068
0x006A
0x006C
0x006E
0x0070
0x0072
0x0074
0x0076

ptr++;

float *ptr;

Incrementing ptr moves it 
to the next sequential 
float array element

16-bit Data Memory Words



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  2991224 CPL

Pointer Arithmetic
Larger Jumps

Adding or subtracting any other number 
with the pointer will change it by a multiple 
of the number of bytes of its type
If we have

intint xx;;
intint **p p = &= &xx;;
p p +=+= 33;;

We will get p = &x + 6 since an int
variable occupies 2 bytes of memory



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3001224 CPL

Example

float a[4]

float a[5]

float a[6]

float a[7]

float a[8]

Pointer Arithmetic
Larger Jumps

float a[0]

float a[1]

float a[2]

float a[3]

ptr = &a;
0x0050
0x0052
0x0054
0x0056
0x0058
0x005A
0x005C
0x005E
0x0060
0x0062
0x0064
0x0066
0x0068
0x006A
0x006C
0x006E
0x0070
0x0072
0x0074
0x0076

ptr += 6;

float *ptr;

Adding 6 to ptr moves it 6 
float array elements 
ahead (24 bytes ahead)

16-bit Data Memory Words



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3011224 CPL

Example

Pointers
Pointer Arithmetic

{{
long xlong x[[33] = {] = {11,,22,,33};};
long *p = &x;long *p = &x;

**pp += += 44;;
pp++;++;
**p p == 0xDEADBEEF0xDEADBEEF;;
pp++;++;
**p p == 0xF1D0F00D0xF1D0F00D;;
p p --== 22;;
**p p == 0xBADF00D10xBADF00D1;;

}}

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08000x0800

0x08020x0802

0x08040x0804

0x08060x0806

0x08080x0808

0x080A0x080A

0x07FE0x07FE

x[0]x[0]

xx[[11]]

xx[[22]]

0x080C0x080C

0000

0001

0000

0002

0000

0003

0000

0800pp



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3021224 CPL

Example

Pointers
Pointer Arithmetic

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08000x0800

0x08020x0802

0x08040x0804

0x08060x0806

0x08080x0808

0x080A0x080A

0x07FE0x07FE

x[0]x[0]

xx[[11]]

xx[[22]]

0x080C0x080C

0000

0005

0000

0002

0000

0003

0000

0800pp

{{
long xlong x[[33] = {] = {11,,22,,33};};
long long **p p = &= &xx;;

*p*p += += 44;;
pp++;++;
**p p = = 0xDEADBEEF0xDEADBEEF;;
pp++;++;
**p p = = 0xF1D0F00D0xF1D0F00D;;
p p --= = 22;;
**p p = = 0xBADF00D10xBADF00D1;;

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3031224 CPL

Example

Pointers
Pointer Arithmetic

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08000x0800

0x08020x0802

0x08040x0804

0x08060x0806

0x08080x0808

0x080A0x080A

0x07FE0x07FE

xx[[00]]

x[1]x[1]

xx[[22]]

0x080C0x080C

0000

0005

0000

0002

0000

0003

0000

0804pp

{{
long xlong x[[33] = {] = {11,,22,,33};};
long long **p p = &= &xx;;

**p p += += 44;;
pp++;++;
**p p = = 0xDEADBEEF0xDEADBEEF;;
pp++;++;
**p p = = 0xF1D0F00D0xF1D0F00D;;
p p --= = 22;;
**p p = = 0xBADF00D10xBADF00D1;;

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3041224 CPL

Example

Pointers
Pointer Arithmetic

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08000x0800

0x08020x0802

0x08040x0804

0x08060x0806

0x08080x0808

0x080A0x080A

0x07FE0x07FE

xx[[00]]

x[1]x[1]

xx[[22]]

0x080C0x080C

0000

0005

0000

BEEF

DEAD

0003

0000

0804pp

{{
long xlong x[[33] = {] = {11,,22,,33};};
long long **p p = &= &xx;;

**p p += += 44;;
pp++;++;
*p*p = = 0xDEADBEEF0xDEADBEEF;;
pp++;++;
**p p = = 0xF1D0F00D0xF1D0F00D;;
p p --= = 22;;
**p p = = 0xBADF00D10xBADF00D1;;

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3051224 CPL

Example

Pointers
Pointer Arithmetic

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08000x0800

0x08020x0802

0x08040x0804

0x08060x0806

0x08080x0808

0x080A0x080A

0x07FE0x07FE

xx[[00]]

xx[[11]]

x[2]x[2]

0x080C0x080C

0000

0005

0000

BEEF

DEAD

0003

0000

0808pp

{{
long xlong x[[33] = {] = {11,,22,,33};};
long long **p p = &= &xx;;

**p p += += 44;;
pp++;++;
**p p = = 0xDEADBEEF0xDEADBEEF;;
pp++;++;
**p p = = 0xF1D0F00D0xF1D0F00D;;
p p --= = 22;;
**p p = = 0xBADF00D10xBADF00D1;;

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3061224 CPL

Example

Pointers
Pointer Arithmetic

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08000x0800

0x08020x0802

0x08040x0804

0x08060x0806

0x08080x0808

0x080A0x080A

0x07FE0x07FE

xx[[00]]

xx[[11]]

x[2]x[2]

0x080C0x080C

0000

0005

0000

BEEF

DEAD

F00D

F1D0

0808pp

{{
long xlong x[[33] = {] = {11,,22,,33};};
long long **p p = &= &xx;;

**p p += += 44;;
pp++;++;
**p p = = 0xDEADBEEF0xDEADBEEF;;
pp++;++;
*p*p = = 0xF1D0F00D0xF1D0F00D;;
p p --= = 22;;
**p p = = 0xBADF00D10xBADF00D1;;

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3071224 CPL

Example

Pointers
Pointer Arithmetic

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08000x0800

0x08020x0802

0x08040x0804

0x08060x0806

0x08080x0808

0x080A0x080A

0x07FE0x07FE

x[0]x[0]

xx[[11]]

xx[[22]]

0x080C0x080C

0000

0005

0000

BEEF

DEAD

F00D

F1D0

0800pp

{{
long xlong x[[33] = {] = {11,,22,,33};};
long long **p p = &= &xx;;

**p p += += 44;;
pp++;++;
**p p = = 0xDEADBEEF0xDEADBEEF;;
pp++;++;
**p p = = 0xF1D0F00D0xF1D0F00D;;
pp --= = 22;;
**p p = = 0xBADF00D10xBADF00D1;;

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3081224 CPL

Example

Pointers
Pointer Arithmetic

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08000x0800

0x08020x0802

0x08040x0804

0x08060x0806

0x08080x0808

0x080A0x080A

0x07FE0x07FE

x[0]x[0]

xx[[11]]

xx[[22]]

0x080C0x080C

0000

00D1

BADF

BEEF

DEAD

F00D

F1D0

0800pp

{{
long xlong x[[33] = {] = {11,,22,,33};};
long long **p p = &= &xx;;

**p p += += 44;;
pp++;++;
**p p = = 0xDEADBEEF0xDEADBEEF;;
pp++;++;
**p p = = 0xF1D0F00D0xF1D0F00D;;
p p --= = 22;;
*p*p = = 0xBADF00D10xBADF00D1;;

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3091224 CPL

Pointers
Post-Increment/Decrement Syntax Rule

Care must be taken with respect to operator 
precedence when doing pointer arithmetic:

Syntax Operation Description by Example

PostPost--Increment Increment 
data pointed to data pointed to 
by Pointerby Pointer

(*p)++(*p)++

PostPost--Increment Increment 
PointerPointer

*p++*p++

*(p++)*(p++)

z = (z = (*p*p)++;)++;
is equivalent to:is equivalent to:
z = *p;z = *p;
*p = *p + 1;*p = *p + 1;

z = *(z = *(pp++);++);
is equivalent to:is equivalent to:
z = *p;z = *p;
p = p + 1;p = p + 1;



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3101224 CPL

Example

Pointers
Post-Increment / Decrement Syntax

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08000x0800

0x08020x0802

0x08040x0804

0x08060x0806

0x08080x0808

0x080A0x080A

0x07FE0x07FE

x[0]x[0]

xx[[11]]

xx[[22]]

0x080C0x080C

0000

0001

0002

0003

0800

0000

0000

0000

pp

yy

{{
intint xx[[33] = {] = {11,,22,,33};};
intint yy;;
intint *p = &x;*p = &x;

y y == 55 + *(+ *(pp++);++);

y y == 55 + (*+ (*pp)++;)++;
}}

Remember:
*(p++) is the same as *p++
Remember:
*(p++) is the same as *p++



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3111224 CPL

Example

Pointers
Post-Increment / Decrement Syntax

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08000x0800

0x08020x0802

0x08040x0804

0x08060x0806

0x08080x0808

0x080A0x080A

0x07FE0x07FE

x[0]x[0]

xx[[11]]

xx[[22]]

0x080C0x080C

0000

0001

0002

0003

0800

0006

0000

0000

pp

yy

{{
intint xx[[33] = {] = {11,,22,,33};};
intint yy;;
intint *p*p == &x&x;;

yy == 55 + + **((pp++);++);

y y == 55 + (*+ (*pp)++;)++;
}}

Remember:
*(p++) is the same as *p++
Remember:
*(p++) is the same as *p++



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3121224 CPL

Example

Pointers
Post-Increment / Decrement Syntax

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08000x0800

0x08020x0802

0x08040x0804

0x08060x0806

0x08080x0808

0x080A0x080A

0x07FE0x07FE

xx[[00]]

xx[[11]]

xx[[22]]

0x080C0x080C

0000

0001

0002

0003

0802

0006

0000

0000

pp

yy

{{
intint xx[[33] = {] = {11,,22,,33};};
intint yy;;
intint *p*p == &x&x;;

y y == 55 + *(+ *(p++p++););

y y == 55 + (*+ (*pp)++;)++;
}}

Remember:
*(p++) is the same as *p++
Remember:
*(p++) is the same as *p++



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3131224 CPL

Example

Pointers
Post-Increment / Decrement Syntax

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08000x0800

0x08020x0802

0x08040x0804

0x08060x0806

0x08080x0808

0x080A0x080A

0x07FE0x07FE

xx[[00]]

x[1]x[1]

xx[[22]]

0x080C0x080C

0000

0001

0002

0003

0802

0007

0000

0000

pp

yy

{{
intint xx[[33] = {] = {11,,22,,33};};
intint yy;;
intint *p*p == &x&x;;

y y == 55 + *(+ *(pp++);++);

yy == 55 + (+ (*p*p)++;)++;
}}

Remember:
*(p++) is the same as *p++
Remember:
*(p++) is the same as *p++



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3141224 CPL

Example

Pointers
Post-Increment / Decrement Syntax

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08000x0800

0x08020x0802

0x08040x0804

0x08060x0806

0x08080x0808

0x080A0x080A

0x07FE0x07FE

xx[[00]]

x[1]x[1]

xx[[22]]

0x080C0x080C

0000

0001

0003

0003

0802

0007

0000

0000

pp

yy

{{
intint xx[[33] = {] = {11,,22,,33};};
intint yy;;
intint *p*p == &x&x;;

y y == 55 + *(+ *(pp++);++);

y y == 55 + (+ (*p*p))++++;;
}}

Remember:
*(p++) is the same as *p++
Remember:
*(p++) is the same as *p++



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3151224 CPL

Pointers
Pre-Increment/Decrement Syntax Rule

Care must be taken with respect to operator 
precedence when doing pointer arithmetic:

Syntax Operation Description by Example

PrePre--Increment Increment 
data pointed to data pointed to 
by Pointerby Pointer

++(*p)++(*p)

PrePre--Increment Increment 
PointerPointer

++*p++*p

*(++p)*(++p)

z = ++(z = ++(*p*p););
is equivalent to:is equivalent to:
*p = *p + 1;*p = *p + 1;
z = *p;z = *p;

z = *(++z = *(++pp););
is equivalent to:is equivalent to:
p = p + 1;p = p + 1;
z = *p;z = *p;



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3161224 CPL

Example

Pointers
Pre-Increment / Decrement Syntax

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08000x0800

0x08020x0802

0x08040x0804

0x08060x0806

0x08080x0808

0x080A0x080A

0x07FE0x07FE

x[0]x[0]

xx[[11]]

xx[[22]]

0x080C0x080C

0000

0001

0002

0003

0800

0000

0000

0000

pp

yy

{{
intint xx[[33] = {] = {11,,22,,33};};
intint yy;;
intint *p = &x;*p = &x;

y y == 55 + *(+++ *(++pp););

y y == 55 + ++(*+ ++(*pp););
}}

Remember:
*(++p) is the same as *++p
Remember:
*(++p) is the same as *++p



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3171224 CPL

Example

Pointers
Pre-Increment / Decrement Syntax

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08000x0800

0x08020x0802

0x08040x0804

0x08060x0806

0x08080x0808

0x080A0x080A

0x07FE0x07FE

xx[[00]]

x[1]x[1]

xx[[22]]

0x080C0x080C

0000

0001

0002

0003

0802

0000

0000

0000

pp

yy

{{
intint xx[[33] = {] = {11,,22,,33};};
intint yy;;
intint *p*p == &x&x;;

y y == 55 + *(+ *(++p++p););

y y == 55 + ++(*+ ++(*pp););
}}

Remember:
*(++p) is the same as *++p
Remember:
*(++p) is the same as *++p



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3181224 CPL

Example

Pointers
Pre-Increment / Decrement Syntax

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08000x0800

0x08020x0802

0x08040x0804

0x08060x0806

0x08080x0808

0x080A0x080A

0x07FE0x07FE

xx[[00]]

x[1]x[1]

xx[[22]]

0x080C0x080C

0000

0001

0002

0003

0802

0007

0000

0000

pp

yy

{{
intint xx[[33] = {] = {11,,22,,33};};
intint yy;;
intint *p*p == &x&x;;

yy == 55 + + **(++(++pp););

y y == 55 + ++(*+ ++(*pp););
}}

Remember:
*(++p) is the same as *++p
Remember:
*(++p) is the same as *++p



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3191224 CPL

Example

Pointers
Pre-Increment / Decrement Syntax

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08000x0800

0x08020x0802

0x08040x0804

0x08060x0806

0x08080x0808

0x080A0x080A

0x07FE0x07FE

xx[[00]]

x[1]x[1]

xx[[22]]

0x080C0x080C

0000

0001

0003

0003

0802

0007

0000

0000

pp

yy

{{
intint xx[[33] = {] = {11,,22,,33};};
intint yy;;
intint *p*p == &x&x;;

y y == 55 + *(+++ *(++pp););

y y == 55 + + ++++((*p*p););
}}

Remember:
*(++p) is the same as *++p
Remember:
*(++p) is the same as *++p



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3201224 CPL

Example

Pointers
Pre-Increment / Decrement Syntax

AddressAddress

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

0x08000x0800

0x08020x0802

0x08040x0804

0x08060x0806

0x08080x0808

0x080A0x080A

0x07FE0x07FE

xx[[00]]

x[1]x[1]

xx[[22]]

0x080C0x080C

0000

0001

0003

0003

0802

0008

0000

0000

pp

yy

{{
intint xx[[33] = {] = {11,,22,,33};};
intint yy;;
intint *p*p == &x&x;;

y y == 55 + *(+++ *(++pp););

yy == 55 + ++(+ ++(*p*p););
}}

Remember:
*(++p) is the same as *++p
Remember:
*(++p) is the same as *++p



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3211224 CPL

The parentheses determine what gets 
incremented/decremented:

Pointers
Pre- and Post- Increment/Decrement Summary

Modify the pointer itself

*(++p) or *++p and *(p++) or *p++

Modify the value pointed to by the pointer

++(*p) and (*p)++



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3221224 CPL

Example

Pointers
Initialization Tip

If a pointer isn't initialized to a specific 
address when it is created, it is a good 
idea to initialize it as NUL (pointing to 
nowhere)
This will prevent it from unintentionally 
corrupting a memory location if it is 
accidentally used before it is initialized

int *p = NUL;
NULL is the character '\0' but NUL is the value of a 
pointer that points to nowhere



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3231224 CPL

On the CDOn the CD
……\\101_ECP101_ECP\\Lab11Lab11\\Lab11.mcwLab11.mcw

Lab 11
Pointers and Pointer 
Arithmetic



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3241224 CPL

Lab 11
Pointers and Pointer Arithmetic

Open the project’s workspace:
On the lab PCOn the lab PC
C:C:\\RTCRTC\\101_ECP101_ECP\\Lab11Lab11\\Lab11.mcwLab11.mcw

11 Open MPLABOpen MPLAB®® IDE and select IDE and select Open Open 
WorkspaceWorkspace…… from the from the FileFile menu.menu.
Open the file listed above.Open the file listed above.

If you already have a project open in If you already have a project open in 
MPLAB IDE, close it by selecting MPLAB IDE, close it by selecting 
Close WorkspaceClose Workspace from the from the FileFile menu menu 
before opening a new one.before opening a new one.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3251224 CPL

Lab 11
Pointers and Pointer Arithmetic

/*############################################################################
# STEP 1: Initialize the pointer p with the address of the variable x
############################################################################*/

//Point to address of x
p = &x;

/*############################################################################
# STEP 2: Complete the following printf() functions by adding in the
#         appropriate arguments as described in the control string.
############################################################################*/

printf("The variable x is located at address 0x%X\n", &x);
printf("The value of x is %d\n", x);
printf("The pointer p is located at address 0x%X\n", &p);
printf("The value of p is 0x%X\n", p);
printf("The value pointed to by *p = %d\n", *p);

/*############################################################################
# STEP 3: Write the int value 10 to the location p is currently pointing to.
############################################################################*/

*p = 10;

Solution: Steps 1, 2 and 3



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3261224 CPL

Lab 11
Pointers and Pointer Arithmetic

/*############################################################################
# STEP 4: Increment the value that p points to.
############################################################################*/

//Increment array element's value
(*p)++;

printf("y[%d] = %d\n", i, *p);
/*############################################################################
# STEP 5: Increment the pointer p so that it points to the next item.
############################################################################*/

//Increment pointer to next array element
p++;

Solution: Steps 4 and 5



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3271224 CPL

Lab 11
Conclusions

Pointers are variables that hold the 
address of other variables
Pointers make it possible for the program 
to change which variable is acted on by a 
particular line of code 
Incrementing and decrementing pointers 
will modify the value in multiples of the 
size of the type they point to



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3281224 CPL

intint x x == 22,, y y == 00;;

intint squaresquare((intint nn) ) 
{{

return return ((n n ** nn););
}}

intint mainmain((voidvoid))
{{

y y == squaresquare((xx););
}}

Pointers and Functions
Passing Pointers to Functions

Normally, functions operate on copies of 
the data passed to them (pass by value)

After Function Call: After Function Call: yy = 4= 4
xx = 2= 2

xx was was notnot changed by functionchanged by function

Value of variable passed to function Value of variable passed to function 
is copied into local variable nis copied into local variable n



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3291224 CPL

intint x x == 2 2 ,, y y == 00;;

voidvoid squaresquare((intint *n*n))
{{

**n n *=*= **nn;;
}}

intint mainmain((voidvoid))
{{

squaresquare((&x&x););
}}

Pointers and Functions
Passing Pointers to Functions

Pointers allow a function to operate on the 
original variable (pass by reference)

After Function Call:  After Function Call:  xx = 4= 4
xx was changed by functionwas changed by function

Address of variable passed to Address of variable passed to 
function and stored in local function and stored in local 
pointer variable npointer variable n



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3301224 CPL

A function with a pointer parameter:

Must be called in one of two ways:
(assume: int x, *p = &x;)

Example

Pointers and Functions
Passing Pointers to Functions

intint foo(intfoo(int *q*q))

foo(foo(&x&x))
Pass an address to the function so the addressPass an address to the function so the address
may be assigned to the pointer parameter:may be assigned to the pointer parameter:
qq = = &x&x

foo(foo(pp))
Pass a pointer to the function so the addressPass a pointer to the function so the address
may be assigned to the pointer parameter:may be assigned to the pointer parameter:
qq = = pp



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3311224 CPL

Example – Part 1

Pointers and Functions
Passing Parameters By Reference

voidvoid swapswap((intint **n1n1,, intint **n2n2))
{{

intint temptemp;;

temp temp = *= *n1n1;;
**n1 n1 = *= *n2n2;;
**n2 n2 == temptemp;;

}}

Swap function definition:Swap function definition:

Addresses of parametersAddresses of parameters
copied to local pointercopied to local pointer
variables: Function canvariables: Function can
now modify the originalnow modify the original
variables via pointers.variables via pointers.

We know where 
you live!

We know where 
you live!



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3321224 CPL

Example – Part 2

Pointers and Functions
Passing Parameters By Reference

intint mainmain((voidvoid))
{{

intint x x == 55,, y y == 1010;;
intint **p p = &= &yy;;

swapswap((&x&x, , pp););

whilewhile((11););
}}

Main function definition:Main function definition:
Swap function prototype:Swap function prototype:
voidvoid swapswap((intint *n1*n1,, intint *n2*n2))

After running program:After running program:
xx = 10= 10
yy = 5= 5

Tell function where 
x and y live…
n1 = &x
n2 = p

Tell function where 
x and y live…
n1 = &x
n2 = p



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3331224 CPL

4949 5050

0000 4343

91C091C0

III

\0\\00

Pointers and Strings
So far, we have worked with strings 
strictly as arrays of char
Strings may be created and used with 
pointers much more elegantly

charchar **strstr == "PIC""PIC";;
String declaration with a pointer:String declaration with a pointer: AddressAddress

1616--bit Data Memory (RAM)bit Data Memory (RAM)

0x91C00x91C0

0x08C20x08C2

0x91C20x91C2

strstr

PPP

CCC

Implementation Implementation 
varies depending on varies depending on 
compiler and compiler and 
architecture used.architecture used.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3341224 CPL

When initialized, a pointer to a string 
points to the first character:

Increment or add an offset to the pointer to 
access subsequent characters

Pointers and Strings

MMM iii ccc rrr ooo ccc hhh iii ppp \0\\00

charchar **strstr == "Microchip""Microchip";;
strstr

strstr +=+= 44



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3351224 CPL

Pointers may also be used to access 
characters via an offset:

Pointer always points to "base address"
Offsets used to access subsequent chars

Pointers and Strings

MMM iii ccc rrr ooo ccc hhh iii ppp \0\\00

charchar **strstr == "Microchip""Microchip";;
**strstr ==== 'M''M'

*(*(strstr ++ 44) ==) == 'o''o'



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3361224 CPL

Example: Pointer Variable Example: Array Variable

charchar strstr[] =[] = "PIC""PIC";;

charchar strstr[[44] =] = "PIC""PIC";;

Pointers and Strings
Pointer versus Array: Initialization at Declaration

Initializing a character string when it is 
declared is essentially the same for both a 
pointer and an array:

oror

The NULL character '\0' is automatically appended to 
strings in both cases (array must be large enough).

charchar **strstr == "PIC""PIC";;



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3371224 CPL

Example: Pointer Variable Example: Array Variable

Pointers and Strings
Pointer versus Array: Assignment in Code

An entire string may be assigned to a pointer
A character array must be assigned character by 
character

Must explicitly add NULL character '\0' to array.

charchar **strstr;;

strstr == "PIC""PIC";;

charchar strstr[[44];];

strstr[[00] =] = 'P''P';;
strstr[[11] =] = 'I''I';;
strstr[[22] =] = 'C''C';;
strstr[[33] =] = ''\\0'0';;



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3381224 CPL

Pointers and Strings
Comparing Strings

If you want to test a string for equivalence, 
the natural thing to do is:
if (str == "Microchip")

This is not correct, though it might appear 
to work sometimes
This compares the address in str to the 
address of the string literal "Microchip"
The correct way is to use the strcmp()
function in the standard library which 
compares strings character by character



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3391224 CPL

strcmp() prototype:

strcmp() return values:
<0 if s1 is less than s2
0 if s1 is equal to s2
>0 if s1 is greater than s2

Pointers and Strings
Comparing Strings

Function Prototype

intint strcmpstrcmp((constconst charchar **s1s1,, const charconst char **s2s2););

The The strcmpstrcmp()() prototype is inprototype is in
C:C:\\Program FilesProgram Files\\MicrochipMicrochip\\MPLAB C30MPLAB C30\\includeinclude\\string.hstring.h



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3401224 CPL

Example

Pointers and Strings
Comparing Strings

#include#include <<string.hstring.h>>

charchar **strstr == "Microchip""Microchip";;

intint mainmain((voidvoid))
{{

ifif ((0 0 ==== strcmp(strstrcmp(str, "Microchip"), "Microchip")))
printfprintf(("They"They match!match!\\n"n"););

whilewhile((11););
}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3411224 CPL

An array of pointers is an ordinary array 
variable whose elements happen to all be 
pointers.

This creates an array of 4 pointers to char
The array p[] itself is like any other array
The elements of p[], such as p[1], are 
pointers to char

Arrays of Pointers
Declaration

charchar **pp[[44];];



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3421224 CPL

00000000

91C091C0

91C391C3

91C791C7

91CC91CC

00000000

00000000

00000000

Arrays of Pointers
Array Elements are Pointers Themselves

1616--bit Data Memory bit Data Memory 
(RAM)(RAM)

pp[[00]]

pp[[11]]

pp[[22]]

pp[[33]]

OOO nnn

OOO fff fff \0\\00

MMM aaa iii nnn \0\\00

AAA uuu xxx \0\\00

91C091C0

91C391C3

91C791C7

91CC91CC

\0\\00



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3431224 CPL

A pointer array element may be initialized 
just like its ordinary variable counterpart:

Or, when working with strings:

Arrays of Pointers
Initialization

pp[[00] = &] = &xx;;

pp[[00] =] = "My string""My string";;



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3441224 CPL

Arrays of Pointers
Dereferencing

To use the value pointed to by a pointer 
array element, just dereference it like you 
would an ordinary variable:

Using *p[0] is the same as using the 
object it points to, such as x or the string 
literal "My String" from the previous 
slide

y y == *p[0]*p[0];;



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3451224 CPL

Example

Arrays of Pointers
Accessing Strings

intint i i == 00;;
charchar **strstr[] = {[] = {"Zero""Zero",, "One""One",, "Two""Two",,

"Three""Three",, "Four""Four",, ""\\0"0"};};

intint mainmain((voidvoid))
{{

whilewhile(*(*strstr[[ii] !=] != ''\\0'0'))
printfprintf(("%s"%s\\nn"",, strstr[[ii++]);++]);

whilewhile((11););
}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3461224 CPL

On the CDOn the CD
……\\101_ECP101_ECP\\Lab12Lab12\\Lab12.mcwLab12.mcw

Lab 12
Pointers, Arrays, and 
Functions



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3471224 CPL

Lab 12
Pointers, Arrays, and Functions

Open the project’s workspace:
On the lab PCOn the lab PC
C:C:\\RTCRTC\\101_ECP101_ECP\\Lab12Lab12\\Lab12.mcwLab12.mcw

11 Open MPLABOpen MPLAB®® IDE and select IDE and select Open Open 
WorkspaceWorkspace…… from the from the FileFile menu.menu.
Open the file listed above.Open the file listed above.

If you already have a project open in If you already have a project open in 
MPLAB IDE, close it by selecting MPLAB IDE, close it by selecting 
Close WorkspaceClose Workspace from the from the FileFile menu menu 
before opening a new one.before opening a new one.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3481224 CPL

Lab 12
Pointers, Arrays, and Functions

/*############################################################################
# STEP1: Pass the variable x to the function twosComplement such that the
#        value of x itself may be changed by the function.  Note: The function 
#        expects a pointer (address) as its parameter.
############################################################################*/
//Perform twos complement on x

twosComplement(&x);

/*############################################################################
# STEP 2: Pass the array 'a' to the function reverse1().  Use the constant
#         ARRAY_SIZE for the second parameter.
#         See definition of function reverse1() below.
############################################################################*/
//Reverse order of elements by passing array

reverse1(a, ARRAY_SIZE);

Solution: Steps 1 and 2



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3491224 CPL

Lab 12
Pointers, Arrays, and Functions

/*############################################################################
# STEP 3: Pass a pointer to array 'a' to the function reverse2().  Use the
#         constant ARRAY_SIZE for the second parameter.
#         See definition of function reverse2() below.
#         Hint: You do not need to define a new pointer variable to do this.
############################################################################*/
//Reverse order of elements by passing pointer

reverse2(a, ARRAY_SIZE);

/*############################################################################
# STEP 4: Complete the function header by defining a parameter called 'number'
#         that points to an integer (i.e. accepts the address of an integer
#         variable).
############################################################################*/
//void twosComplement(/*### Your Code Here ###*/)
void twosComplement(int *number)
{

*number = ~(*number);             //Bitwise complement value
*number += 1;                     //Add 1 to result

}

Solution: Steps 3 and 4



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3501224 CPL

Lab 12
Conclusions

Pointers make it possible to pass a 
variable by reference to a function (allows 
function to modify original variable – not a 
copy of its contents)
Arrays are frequently treated like pointers 
An array name alone represents the 
address of the first element of the array



© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL Slide      
351

Section 1.14
Function Pointers



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3521224 CPL

Function Pointers
Pointers may also be used to point to 
functions
Provides a more flexible way to call a 
function, by providing a choice of which 
function to call
Makes it possible to pass functions to 
other functions
Not extremely common, but very useful in 
the right situations



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3531224 CPL

A function pointer is declared much like a 
function prototype:

Here, we have declared a function pointer 
with the name fp

The function it points to must take one int
parameter
The function it points to must return an int

Function Pointers
Declaration

intint ((**fpfp))((intint xx););



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3541224 CPL

A function pointer is initialized by setting 
the pointer name equal to the function 
name

Function Pointers
Initialization

If we declare the following:

We can initialize the function pointer like this:

fpfp == foofoo;; ////fpfp now points to now points to foofoo

intint (*(*fpfp)()(intint xx);); //Function pointer//Function pointer
intint foofoo((intint xx);); //Function prototype//Function prototype



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3551224 CPL

Function Pointers
Calling a Function via a Function Pointer

The function pointed to by fp from the 
previous slide may be called like this:

This is the same as calling the function 
directly:

y y == foofoo((xx););

y y == fpfp((xx););



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3561224 CPL

Function Pointers
Passing a Function to a Function

Example 1: Understanding the Mechanism

intint xx;;
intint foo(foo(intint aa,, intint bb);); //Function prototype//Function prototype
intint bar(bar(intint aa,, intint bb);); //Function prototype//Function prototype

//Function definition with function pointer parameter//Function definition with function pointer parameter
intint foobarfoobar((intint aa,, intint bb,, intint (*(*fpfp)()(intint,, intint))))
{{

return return fpfp((aa,, bb);  );  //Call function passed by pointer//Call function passed by pointer
}}

voidvoid mainmain((voidvoid))
{{

x x == foobarfoobar((55, , 1212, &, &foofoo);  );  //Pass address of //Pass address of foofoo
}    }    



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3571224 CPL

Function Pointers
Passing a Function to a Function

Example 2: Evaluate a Definite Integral (approximation)

floatfloat integralintegral((floatfloat aa,, floatfloat bb,, floatfloat (*(*ff)()(floatfloat))))
{{

floatfloat sum sum == 0.00.0;;
floatfloat xx;;
intint nn;;

//Evaluate //Evaluate integral{a,bintegral{a,b} } f(xf(x) ) dxdx
forfor ((n n == 00;; n n <=<= 100100; n++; n++))
{{

x x = ((= ((n n // 100.0100.0) * () * (b b –– aa)) +)) + aa;;
sum sum += (+= (ff((xx) * () * (b b –– aa)) /)) / 101.0101.0;;

}}
returnreturn sumsum;;

}}

aa

bb∫y =y = f(xf(x) ) dxdx

Adapted from example at: http://Adapted from example at: http://en.wikipedia.org/wiki/Function_pointeren.wikipedia.org/wiki/Function_pointer

bounds of integral function to be evaluated



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3581224 CPL

On the CDOn the CD
……\\101_ECP101_ECP\\Lab13Lab13\\Lab13.mcwLab13.mcw

Lab 13
Function Pointers



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3591224 CPL

Lab 13
Function Pointers

Open the project’s workspace:
On the lab PCOn the lab PC
C:C:\\RTCRTC\\101_ECP101_ECP\\Lab13Lab13\\Lab13.mcwLab13.mcw

11 Open MPLABOpen MPLAB®® IDE and select IDE and select Open Open 
WorkspaceWorkspace…… from the from the FileFile menu.menu.
Open the file listed above.Open the file listed above.

If you already have a project open in If you already have a project open in 
MPLAB IDE, close it by selecting MPLAB IDE, close it by selecting 
Close WorkspaceClose Workspace from the from the FileFile menu menu 
before opening a new one.before opening a new one.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3601224 CPL

Lab 13
Function Pointers

Compile and run the code:

22 Click on the Click on the Build AllBuild All button.button.

Compile (Build All)Compile (Build All) RunRun22 33

33 If no errors are reported,If no errors are reported,
click on the click on the RunRun button.button.

HaltHalt44

44 Click on the Click on the HaltHalt button.button.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3611224 CPL

Lab 13
Function Pointers

Results

Three separate functions are integrated over the interval 0 to 1Three separate functions are integrated over the interval 0 to 1::
yy11 = = ∫∫x x dxdx = = ½½ xx22 + C [0,1] + C [0,1] = 0.500000= 0.500000
yy22 = = ∫∫xx2 2 dxdx = = ⅓⅓ xx33 + C [0,1]+ C [0,1] = 0.335000= 0.335000
yy33 = = ∫∫xx33 dxdx = = ¼¼ xx44 + C [0,1]+ C [0,1] = 0.252500= 0.252500



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3621224 CPL

Lab 13
Function Pointers

/*============================================================================
FUNCTION:     xsquared()
DESCRIPTION:  Implements function y = x^2
PARAMETERS:   float x
RETURNS:      float (x * x)
REQUIREMENTS: none

============================================================================*/
float xsquared(float x)
{

return (x * x);
}

/*---------------------------------------------------------------------------
Evaluate y2 = Int x^2 dx over the interval 0 to 1

---------------------------------------------------------------------------*/
y2 = integral(0, 1, xsquared);

Function to Evaluate: xsquared()



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3631224 CPL

Lab 13
Function Pointers

/*============================================================================
FUNCTION:     integral()
DESCRIPTION:  Evaluates the integral of the function passed to it over the 

interval a to b.
PARAMETERS:   interval end points a & b and function to integrate
RETURNS:      integral of function f over interval a to b
REQUIREMENTS: none
SOURCE:       Adapted from example at: 

http://en.wikipedia.org/wiki/Function_pointer
============================================================================*/
float integral(float a, float b, float (*f)(float))
{

float sum = 0.0;
float x;
int n;
//Evaluate integral{a,b} f(x) dx
for (n = 0; n <= 100; n++)
{

x = ((n / 100.0) * (b-a)) + a;
sum += (f(x) * (b-a)) / 101.0;

}
return sum;

}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3641224 CPL

Lab 13
Conclusions

Function pointers, while not frequently 
used, can provide a very convenient 
mechanism for passing a function to 
another function
Many other possible applications exist

Jump tables
Accommodating multiple calling conventions
Callback functions (used in Windows™)
Call different versions of a function under 
different circumstances



© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL Slide      
365

Section 1.15
Structures



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3661224 CPL

Definition

Structures

Structures:
May contain any number of members
Members may be of any data type
Allow group of related variables to be treated 
as a single unit, even if different types
Ease the organization of complicated data

StructuresStructures are collections of variables grouped together are collections of variables grouped together 
under a common name.  The variables within a structure are under a common name.  The variables within a structure are 
referred to as the structurereferred to as the structure’’s s membersmembers, and may be , and may be 
accessed individually as needed.accessed individually as needed.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3671224 CPL

Example

Syntax

Structures
How to Create a Structure Definition

// Structure to handle complex numbers// Structure to handle complex numbers
structstruct complexcomplex
{{
floatfloat rere;; // Real part// Real part
floatfloat imim;; // Imaginary part// Imaginary part

}}

structstruct structNamestructName
{{

typetype11 memberNamememberName11;;
......
typetypenn memberNamememberNamenn;;

}}

Members are declared just Members are declared just 
like ordinary variableslike ordinary variables



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3681224 CPL

Example

Syntax

structstruct structNamestructName
{{

typetype11 memberNamememberName11;;
......
typetypenn memberNamememberNamenn;;

}} varNamevarName11,,......,,varNamevarNamenn;;

Structures
How to Declare a Structure Variable (Method 1)

// Structure to handle complex numbers// Structure to handle complex numbers
structstruct complexcomplex
{{
floatfloat rere;;
floatfloat imim;;

} } x, yx, y;        ;        // Declare x and y of type complex// Declare x and y of type complex



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3691224 CPL

Example

Syntax

structstruct structNamestructName varNamevarName11,,……,,varNamevarNamenn;;

Structures
How to Declare a Structure Variable (Method 2)

structstruct complexcomplex
{{
floatfloat rere;;
floatfloat imim;;

}        }        
......
structstruct complexcomplex xx,, yy;  ;  // Declare x and y of type complex// Declare x and y of type complex

If If structNamestructName has already been defined:has already been defined:



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3701224 CPL

Example

Syntax

Structures
How to Use a Structure Variable

structVariableName.memberNamestructVariableName.memberName

structstruct complexcomplex
{{
floatfloat rere;;
floatfloat imim;;

} } x, yx, y;           ;           // Declare x and y of type complex// Declare x and y of type complex

intint mainmain((voidvoid))
{{
x.rex.re == 1.251.25;    ;    // Initialize real part of x// Initialize real part of x
x.imx.im == 2.502.50;    ;    // Initialize imaginary part of x// Initialize imaginary part of x
y y == xx;          ;          // Set // Set structstruct y equal to y equal to structstruct xx
......



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3711224 CPL

Example

Syntax

Structures
How to Create a Structure Type with typedef

// Structure type to handle complex numbers// Structure type to handle complex numbers
typedeftypedef structstruct
{{
floatfloat rere;; // Real part// Real part
floatfloat imim;; // Imaginary part// Imaginary part

} } complexcomplex;;

typedeftypedef structstruct structTagstructTagoptionaloptional
{{

typetype11 memberNamememberName11;;
......
typetypenn memberNamememberNamenn;;

}} typeNametypeName;;



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3721224 CPL

Example

Syntax

typeNametypeName varNamevarName11,,……,,varNamevarNamenn;;

Structures
How to Declare a Structure Type Variable

typedeftypedef structstruct
{{
floatfloat rere;;
floatfloat imim;;

} } complexcomplex;       ;       
......
complexcomplex xx,, yy;  ;  // Declare x and y of type complex// Declare x and y of type complex

If If typeNametypeName has already been defined:has already been defined:

The keywordThe keyword structstruct is no longer required!is no longer required!



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3731224 CPL

Example

Syntax

Structures
How to Initialize a Structure Variable at Declaration

typeNametypeName varNamevarName = {= {constconst11,,……,,constconstnn};};

typedeftypedef structstruct
{{
floatfloat rere;;
floatfloat imim;;

} } complexcomplex;       ;       
......
complexcomplex x x = {= {1.251.25, , 2.502.50};  };  // // x.rex.re = 1.25, = 1.25, x.imx.im = 2.50= 2.50

If If typeNametypeName or or structNamestructName has already been defined:has already been defined:

structstruct structNamestructName varNamevarName = {= {constconst11,,……,,constconstnn};};
-- or or --



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3741224 CPL

Example

Structures
Nesting Structures

typedeftypedef structstruct
{{
floatfloat xx;;
floatfloat yy;;

}} pointpoint;;

typedeftypedef structstruct
{{
pointpoint aa;;
pointpoint bb;;

}} lineline;;

intint mainmain((voidvoid))
{{
line mline m;;

m.a.xm.a.x == 1.21.2;;
m.a.ym.a.y = = 7.67.6;;
m.b.xm.b.x = = 38.538.5;;
m.b.ym.b.y = = 17.817.8;;
......

a

b

(xa, ya) = (1.2, 7.6)

(xb, yb) = (38.5, 17.8)

x

y

m
line

point

point



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3751224 CPL

Strings:
May be assigned directly to char array 
member only at declaration
May be assigned directly to a pointer to char
member at any time

Example: Structure Example: Initializing Members

Structures
Arrays and Pointers with Strings

structstruct stringsstrings
{{
charchar a[4]a[4];;
charchar *b*b;;

} } strstr;       ;       

intint main(main(voidvoid))
{{
str.astr.a[[00] =] = ‘‘BB’’;;
str.astr.a[[11] =] = ‘‘aa’’;;
str.astr.a[[22] =] = ‘‘dd’’;;
str.astr.a[[33] =] = ‘‘\\00’’;;

str.bstr.b == ““GoodGood””;       ;       



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3761224 CPL

Syntax

Example 1 Example 2

Structures
How to Declare a Pointer to a Structure

typeNametypeName **ptrNameptrName;;

typedeftypedef structstruct
{{

floatfloat rere;;
floatfloat imim;;

} } complexcomplex;       ;       
......
complexcomplex *p*p; ; 

If typeName or structName has already been defined:

structstruct structNamestructName **ptrNameptrName;;
-- or or --

structstruct complexcomplex
{{

floatfloat rere;;
floatfloat imim;;

}       }       
......
structstruct complexcomplex *p*p; ; 



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3771224 CPL

Example: Definitions Example: Usage

Syntax

Structures
How to Use a Pointer to Access Structure Members

ptrNameptrName-->>memberNamememberName

If ptrName has already been defined:

typedeftypedef structstruct
{{
floatfloat rere;;
floatfloat imim;;

} } complexcomplex;  ;  //complex type//complex type
......
complex xcomplex x;  ;  //complex //complex varvar
complexcomplex *p*p; ; ////ptrptr to complexto complex

intint mainmain((voidvoid))
{{
p = &xp = &x;;
//Set //Set x.rex.re = 1.25 via p= 1.25 via p
pp-->re>re = = 1.251.25;;
//Set //Set x.imx.im = 2.50 via p= 2.50 via p
pp-->>imim = = 2.502.50; ; 

}  }  

Pointer must first be initialized to point to the address of thePointer must first be initialized to point to the address of the
structure itself:  structure itself:  ptrNameptrName == &&structVariablestructVariable;;



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3781224 CPL

Example

Syntax

Structures
Creating Arrays of Structures

typeNametypeName arrNamearrName[[nn];];

typedeftypedef structstruct
{{

floatfloat rere;;
floatfloat imim;;

} } complexcomplex;       ;       
......
complexcomplex aa[[33]; ]; 

If typeName or structName has already been defined:

structstruct structNamestructName arrNamearrName[[nn];];
-- or or --



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3791224 CPL

Example

Syntax

Structures
Initializing Arrays of Structures at Declaration

typedeftypedef structstruct
{{

floatfloat rere;;
floatfloat imim;;

} } complexcomplex;       ;       
......
complexcomplex aa[[33] = {{] = {{1.21.2,, 2.52.5}, {}, {3.93.9,, 6.56.5}, {}, {7.17.1,, 8.48.4}}; }}; 

typeNametypeName arrNamearrName[[nn]] = {{= {{listlist11},},……,{,{listlistnn}};}};

If typeName or structName has already been defined:

structstruct structNamestructName arrNamearrName[[nn]] = {{= {{listlist11},},……,{,{listlistnn}};}};
-- or or --



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3801224 CPL

Example: Definitions Example: Usage

Syntax

Structures
Using Arrays of Structures

typedeftypedef structstruct
{{

floatfloat rere;;
floatfloat imim;;

} } complexcomplex;       ;       
......
complex acomplex a[[33]; ]; 

intint mainmain((voidvoid))
{{

aa[[00]].re.re = = 1.251.25;   ;   
aa[[00]].im.im = = 2.502.50;   ;   
......

} } 

arrNamearrName[[nn]]..memberNamememberName

If arrName has already been defined:



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3811224 CPL

Example

Structures
How to Pass Structures to Functions

typedeftypedef structstruct
{{
floatfloat rere;;
floatfloat imim;;

}} complexcomplex;;

voidvoid displaydisplay((complexcomplex xx))
{{
printfprintf((““(%f(%f + + j%f)j%f)\\nn””,, x.rex.re,, x.imx.im););

}}

intint mainmain((voidvoid))
{{
complex a complex a == {{1.21.2,, 2.52.5};};
complex b complex b == {{3.73.7,, 4.04.0};};

displaydisplay((aa););
displaydisplay((bb););

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3821224 CPL

On the CDOn the CD
……\\101_ECP101_ECP\\Lab14Lab14\\Lab14.mcwLab14.mcw

Lab 14
Structures



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3831224 CPL

Lab 14
Structures

Open the project’s workspace:
On the lab PCOn the lab PC
C:C:\\RTCRTC\\101_ECP101_ECP\\Lab14Lab14\\Lab14.mcwLab14.mcw

11 Open MPLABOpen MPLAB®® IDE and select IDE and select Open Open 
WorkspaceWorkspace…… from the from the FileFile menu.menu.
Open the file listed above.Open the file listed above.

If you already have a project open in If you already have a project open in 
MPLAB IDE, close it by selecting MPLAB IDE, close it by selecting 
Close WorkspaceClose Workspace from the from the FileFile menu menu 
before opening a new one.before opening a new one.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3841224 CPL

Lab 14
Structures

/*############################################################################
# STEP 1: Calculate the difference between maximum and minimum power in
#         circuit 1 using the individual power structures (i.e. variables 
#         PMax1 & PMin1).  Algebraic Notation:
#                                      Pdiff = (Vmax * Imax) - (Vmin * Imin)
############################################################################*/
powerDiff1 = (PMax1.v * PMax1.i) - (PMin1.v * PMin1.i);
powerDiff2 = (PMax2.v * PMax2.i) - (PMin2.v * PMin2.i);
powerDiff3 = (PMax3.v * PMax3.i) - (PMin3.v * PMin3.i);

/*############################################################################
# STEP 2: Calculate the difference between maximum and minimum power in 
#         circuit 1 using the structure of structures (i.e. variable PRange1).
#         Algebraic Notation: Pdiff = (Vmax * Imax) - (Vmin * Imin)
############################################################################*/
powerDiff1 = (PRange1.max.v * PRange1.max.i) - (PRange1.min.v * PRange1.min.i);
powerDiff2 = (PRange2.max.v * PRange2.max.i) - (PRange2.min.v * PRange2.min.i);
powerDiff3 = (PRange3.max.v * PRange3.max.i) - (PRange3.min.v * PRange3.min.i);

Solution: Steps 1 and 2



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3851224 CPL

Lab 14
Conclusions

Structures make it possible to associate 
related variables of possibly differing 
types under the same name
Structure members (using the dot 
notation) may be used anywhere an 
ordinary variable would be used
Pointers to structures make it possible to 
copy one entire structure to another very 
easily



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3861224 CPL

On the CDOn the CD
……\\101_ECP101_ECP\\Lab15Lab15\\Lab15.mcwLab15.mcw

Lab 15
Arrays of Structures



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3871224 CPL

Lab 15
Arrays of Structures

Open the project’s workspace:
On the lab PCOn the lab PC
C:C:\\RTCRTC\\101_ECP101_ECP\\LabsLabs\\Lab15Lab15\\Lab15.mcwLab15.mcw

11 Open MPLABOpen MPLAB®® IDE and select IDE and select Open Open 
WorkspaceWorkspace…… from the from the FileFile menu.menu.
Open the file listed above.Open the file listed above.

If you already have a project open in If you already have a project open in 
MPLAB IDE, close it by selecting MPLAB IDE, close it by selecting 
Close WorkspaceClose Workspace from the from the FileFile menu menu 
before opening a new one.before opening a new one.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3881224 CPL

Lab 15
Arrays of Structures

/*############################################################################
# STEP 1: Multiply the real (re) part of each array element by 10
#         HINT: Use *=
############################################################################*/
//Multiply re part of current array element by 10

x[i].re *= 10;

/*############################################################################
# STEP 2: Multiply the imaginary (im) part of each array element by 5
#         HINT: Use *=
############################################################################*/
//Multiply im part of current array element by 5

x[i].im *= 5;

Solution: Steps 1 and 2



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3891224 CPL

Lab 15
Conclusions

Arrays of structures allow groups of 
related structures to be referenced by a 
common name
Individual structures may be referenced by 
the array index
Individual structure members may be 
referenced by the dot notation, in 
conjunction with the array name and index



© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL Slide      
390

Section 1.16
Unions



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3911224 CPL

Definition

Unions

Unions:
May contain any number of members
Members may be of any data type
Are as large as their largest member
Use exactly the same syntax as structures 
except struct is replaced with union

UnionsUnions are similar to structures but a unionare similar to structures but a union’’s members all s members all 
share the same memory location.  In essence a union is a share the same memory location.  In essence a union is a 
variable that is capable of holding different types of data at variable that is capable of holding different types of data at 
different times.different times.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3921224 CPL

Syntax

Example

Unions
How to Create a Union

// Union of char, // Union of char, intint and floatand float
unionunion mixedBagmixedBag
{{
charchar aa;;
intint bb;;
floatfloat cc;;

}}

unionunion unionNameunionName
{{

typetype11 memberNamememberName11;;
......
typetypenn memberNamememberNamenn;;

}}



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3931224 CPL

Syntax

Example

Unions
How to Create a Union Type with typedef

// Union of char, // Union of char, intint and floatand float
typedeftypedef unionunion
{{
charchar aa;;
intint bb;;
floatfloat cc;;

} } mixedBagmixedBag;;

typedeftypedef unionunion unionTagunionTagoptionaloptional
{{

typetype11 memberNamememberName11;;
......
typetypenn memberNamememberNamenn;;

} } typeNametypeName;;



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3941224 CPL

Example

typedeftypedef unionunion
{{
charchar aa;;
intint bb;;
floatfloat cc;;

} } mixedBagmixedBag;;

mixedBagmixedBag xx;;

Unions
How Unions Are Stored In Memory

Union variables may be declared exactly 
like structure variables
Memory is only allocated to accommodate 
the union’s largest member

x

16-bit Data Memory (RAM)Space allocated 
for x is size of 
float

0x800

0x802

0x7FF

0x804



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3951224 CPL

Example

typedeftypedef unionunion
{{
charchar aa;;
intint bb;;
floatfloat cc;;

} } mixedBagmixedBag;;

mixedBagmixedBag xx;;

Unions
How Unions Are Stored In Memory

Union variables may be declared exactly 
like structure variables
Memory is only allocated to accommodate 
the union’s largest member

x

16-bit Data Memory (RAM)x.a only 
occupies the 
lowest byte of 
the union 0x800

0x802

0x7FF

0x804



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3961224 CPL

Example

typedeftypedef unionunion
{{
charchar aa;;
intint bb;;
floatfloat cc;;

} } mixedBagmixedBag;;

mixedBagmixedBag xx;;

Unions
How Unions Are Stored In Memory

Union variables may be declared exactly 
like structure variables
Memory is only allocated to accommodate 
the union’s largest member

x

16-bit Data Memory (RAM)x.b only 
occupies the 
lowest two 
bytes of the 
union

0x800

0x802

0x7FF

0x804



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3971224 CPL

Example

typedeftypedef unionunion
{{
charchar aa;;
intint bb;;
floatfloat cc;;

} } mixedBagmixedBag;;

mixedBagmixedBag xx;;

Unions
How Unions Are Stored In Memory

Union variables may be declared exactly 
like structure variables
Memory is only allocated to accommodate 
the union’s largest member

x

16-bit Data Memory (RAM)x.c occupies 
all four bytes of 
the union

0x800

0x802

0x7FF

0x804



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3981224 CPL

On the CDOn the CD
……\\101_ECP101_ECP\\Lab16Lab16\\Lab16.mcwLab16.mcw

Lab 16
Unions



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  3991224 CPL

Lab 16
Unions

Open the project’s workspace:
On the lab PCOn the lab PC
C:C:\\RTCRTC\\101_ECP101_ECP\\Lab16Lab16\\Lab16.mcwLab16.mcw

11 Open MPLABOpen MPLAB®® IDE and select IDE and select Open Open 
WorkspaceWorkspace…… from the from the FileFile menu.menu.
Open the file listed above.Open the file listed above.

If you already have a project open in If you already have a project open in 
MPLAB IDE, close it by selecting MPLAB IDE, close it by selecting 
Close WorkspaceClose Workspace from the from the FileFile menu menu 
before opening a new one.before opening a new one.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4001224 CPL

Lab 16
Unions

/*############################################################################
# STEP 1: Set the int member of unionVar equal to 16877.
############################################################################*/
//Set intVar = 16877

unionVar.intVar = 16877;

/*############################################################################
# STEP 2: Set the float member of unionVar equal to 6.02e23.
############################################################################*/
//Set floatVar = 6.02e23

unionVar.floatVar = 6.02e23;

Solution: Steps 1 and 2



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4011224 CPL

Lab 16
Conclusions

Unions make it possible to store multiple 
variables at the same location
They make it possible to access those 
variables in different ways
They make it possible to store different 
variable types in the same memory 
location(s)



© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL Slide      
402

Section 1.17
Bit Fields



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4031224 CPL

Definition

Bit Fields

Bit Fields:
Are ordinary members of a structure
Have a specified bit width
Are often used in conjunction with unions to 
provide bit access to a variable without 
masking operations

Bit FieldsBit Fields are are unsigned unsigned intint members of structures that members of structures that 
occupy a specified number of adjacent bits from one to occupy a specified number of adjacent bits from one to 
sizeof(intsizeof(int)).. They may be used as an ordinary They may be used as an ordinary intint
variable in arithmetic and logical operations.  variable in arithmetic and logical operations.  



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4041224 CPL

Syntax

Example

Bit Fields
How to Create a Bit Field

typedeftypedef structstruct
{{
unsigned unsigned intint bit0: 1bit0: 1;;
unsigned unsigned intint bit1to3: 3bit1to3: 3;;
unsigned unsigned intint bit4: 1bit4: 1;;
unsigned unsigned intint bit5: 1bit5: 1;;
unsigned unsigned intint bit6to7: 2bit6to7: 2;;

} } byteBitsbyteBits;;

structstruct structNamestructName
{{

unsigned unsigned intint memberNamememberName11: : bitWidthbitWidth;;
......
unsigned unsigned intint memberNamememberNamenn: : bitWidthbitWidth;;

}}

bitfieldbitfield structstruct
may be declared may be declared 
normally or as a normally or as a 
typedeftypedef



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4051224 CPL

Example

Bit Fields
How to Use a Bit Field

structstruct byteBitsbyteBits
{{
unsignedunsigned a: 1a: 1;;
unsignedunsigned b: 1b: 1;;
unsignedunsigned c: 2c: 2;;
unsignedunsigned d: 1d: 1;;
unsignedunsigned e: 3e: 3;;

} } xx;;

intint mainmain((voidvoid))
{{
x.ax.a = = 11;         ;         ////x.ax.a may contain values from 0 to 1may contain values from 0 to 1
x.bx.b = = 00;         ;         ////x.bx.b may contain values from 0 to 1may contain values from 0 to 1
x.cx.c = = 0b100b10;      ;      ////x.cx.c may contain values from 0 to 3may contain values from 0 to 3
x.dx.d = = 0x00x0;       ;       ////x.dx.d may contain values from 0 to 1may contain values from 0 to 1
x.ex.e = = 77;         ;         ////x.ex.e may contain values from 0 to 7may contain values from 0 to 7

}}

11 11 11 00 11 00 00 11xx

0011223344556677
Byte in Data Memory (RAM)Byte in Data Memory (RAM)

aabbccddee



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4061224 CPL

On the CDOn the CD
……\\101_ECP101_ECP\\Lab17Lab17\\Lab17.mcwLab17.mcw

Lab 17
Bit Fields



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4071224 CPL

Lab 17
Bit Fields

Open the project’s workspace:
On the lab PCOn the lab PC
C:C:\\RTCRTC\\101_ECP101_ECP\\Lab17Lab17\\Lab17.mcwLab17.mcw

11 Open MPLABOpen MPLAB®® IDE and select IDE and select Open Open 
WorkspaceWorkspace…… from the from the FileFile menu.menu.
Open the file listed above.Open the file listed above.

If you already have a project open in If you already have a project open in 
MPLAB IDE, close it by selecting MPLAB IDE, close it by selecting 
Close WorkspaceClose Workspace from the from the FileFile menu menu 
before opening a new one.before opening a new one.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4081224 CPL

Lab 17
Bit Fields

Compile and run the code:

22 Click on the Click on the Build AllBuild All button.button.

Compile (Build All)Compile (Build All) RunRun22 33

33 If no errors are reported,If no errors are reported,
click on the click on the RunRun button.button.

HaltHalt44

44 Click on the Click on the HaltHalt button.button.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4091224 CPL

Lab 17
Bit Fields

/*----------------------------------------------------------------------------
VARIABLE DECLARATIONS

----------------------------------------------------------------------------*/
union {

char fullByte;
struct {

int bit0: 1;
int bit1: 1;
int bit2: 1;
int bit3: 1;
int bit4: 1;
int bit5: 1;
int bit6: 1;
int bit7: 1;

} bitField;
} bitByte;

Bit Field Definition



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4101224 CPL

Lab 17
Bit Fields

Demo Results 1

bitByte.fullByte = 0x55;



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4111224 CPL

Lab 17
Bit Fields

Demo Results 2

bitByte.bitField.bit0 = 0;



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4121224 CPL

Lab 17
Bit Fields

Demo Results 3

bitByte.bitField.bit2 = 0;



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4131224 CPL

Lab 17
Bit Fields

Demo Results 4

bitByte.bitField.bit7 = 1;



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4141224 CPL

Lab 17
Conclusions

Bit fields provide an efficient mechanism 
to store Boolean values, flags and 
semaphores in data memory
Care must be used if code size or speed is 
a concern

Compiler will usually make use of bit set / bit 
clear instructions
In some circumstances this isn't possible 
(comparing bit values)



© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL Slide      
415

Section 1.18
Enumerations



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4161224 CPL

Definition

Enumerations

Enumerations:
Are unique integer data types
May only contain a specified list of values
Values are specified as symbolic constants 

EnumerationsEnumerations are integer data types that you can create are integer data types that you can create 
with a limited range of values.  Each value is represented by with a limited range of values.  Each value is represented by 
a symbolic constant that may be used in conjunction with a symbolic constant that may be used in conjunction with 
variables of the same enumerated type.variables of the same enumerated type.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4171224 CPL

Example

Syntax

Enumerations
How to Create an Enumeration Type

enumenum weekday weekday {{SUNSUN,, MONMON,, TUETUE,, WEDWED,, THRTHR,, FRIFRI,, SATSAT};};

enumenum typeNametypeName {{labellabel00, , labellabel11,,……,,labellabelnn}}
Where compiler sets Where compiler sets labellabel00 = = 00, , labellabel11 = = 11, , labellabelnn = = nn

Creates an ordered list of constants
Each label’s value is one greater than the 
previous label

SUNSUN = = 00, , MONMON = = 11, , TUETUE = = 22, , WEDWED = = 33, , THRTHR = = 44 , , FRIFRI = = 55, , SATSAT = = 66
Label Values:Label Values:



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4181224 CPL

Example

Enumerations
How to Create an Enumeration Type

Any label may be assigned a specific value
The following labels will increment from 
that value

Syntax

enumenum typeNametypeName {{labellabel00 == constconst00,,……,,labellabelnn}}
Where compiler sets Where compiler sets labellabel00 = = constconst00, , labellabel11 = (= (constconst00 + 1), ... + 1), ... 

enumenum people people {{RobRob,, SteveSteve,, Paul Paul == 77,, BillBill,, GaryGary};};

RobRob = = 00, , SteveSteve = = 11, , PaulPaul = = 77, , BillBill = = 88, , GaryGary == 99
Label Values:Label Values:



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4191224 CPL

Example

Syntax

Syntax

enumenum typeNametypeName {{constconst--listlist} } varnamevarname11,,……;;

Enumerations
How to Declare an Enumeration Type Variable

enumenum weekday weekday {{SUNSUN,, MONMON,, TUETUE,, WEDWED,, THRTHR,, FRIFRI,, SATSAT} } todaytoday;;

enumenum weekday weekday somedaysomeday;  ;  //day is a variable of type weekday//day is a variable of type weekday

Declared along with type:

enumenum typeNametypeName varNamevarName11,,……,,varNamevarNamenn;;

Declared independently:



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4201224 CPL

Example

Syntax

enumenum {{constconst--listlist} } varNamevarName11,,……,,varNamevarNamenn;;

Enumerations
How to Declare a ‘Tagless’ Enumeration Variable

enumenum {{SUNSUN,, MONMON,, TUETUE,, WEDWED,, THRTHR,, FRIFRI,, SATSAT} } todaytoday;;

No type name specified:

Only variables specified as part of the enum
declaration may be of that type
No type name is available to declare additional 
variables of the enum type later in code



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4211224 CPL

Example

Syntax

typedeftypedef enumenum {{constconst--listlist} } typeNametypeName;;

Enumerations
How to Declare an Enumeration Type with typedef

typedeftypedef enumenum {{SUNSUN,, MONMON,, TUETUE,, WEDWED,, THRTHR,, FRIFRI,, SATSAT} } weekdayweekday;;

weekdayweekday dayday;     ;     //Variable of type weekday//Variable of type weekday

Variables may be declared as type typeName
without needing the enum keyword

The enumeration may now be used as an 
ordinary data type (compatible with int)



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4221224 CPL

Example

Syntax

varNamevarName == labellabelnn;;

Enumerations
How to Use an Enumeration Type Variable

enumenum weekday weekday {{SUNSUN,, MONMON,, TUETUE,, WEDWED,, THRTHR,, FRIFRI,, SATSAT};};
enumenum weekday dayweekday day;;

dayday = = WEDWED;;
dayday = = 66;               ;               //May only use values from 0 to 6//May only use values from 0 to 6
if if ((dayday == == WEDWED))
{ { ……

If enumeration and variable have already been defined:

The labels may be used as any other symbolic constant
Variables defined as enumeration types must be used in 
conjunction with the type’s labels or equivalent integer



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4231224 CPL

On the CDOn the CD
……\\101_ECP101_ECP\\Lab18Lab18\\Lab18.mcwLab18.mcw

Lab 18
Enumerations



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4241224 CPL

Lab 18
Enumerations

Open the project’s workspace:
On the lab PCOn the lab PC
C:C:\\RTCRTC\\101_ECP101_ECP\\Lab18Lab18\\Lab18.mcwLab18.mcw

11 Open MPLABOpen MPLAB®® IDE and select IDE and select Open Open 
WorkspaceWorkspace…… from the from the FileFile menu.menu.
Open the file listed above.Open the file listed above.

If you already have a project open in If you already have a project open in 
MPLAB IDE, close it by selecting MPLAB IDE, close it by selecting 
Close WorkspaceClose Workspace from the from the FileFile menu menu 
before opening a new one.before opening a new one.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4251224 CPL

Lab 18
Enumerations

Compile and run the code:

22 Click on the Click on the Build AllBuild All button.button.

Compile (Build All)Compile (Build All) RunRun22 33

33 If no errors are reported,If no errors are reported,
click on the click on the RunRun button.button.

HaltHalt44

44 Click on the Click on the HaltHalt button.button.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4261224 CPL

Lab 18
Enumerations

typedef enum {BANDSTOP, LOWPASS, HIGHPASS, BANDPASS} filterTypes;

filterTypes filter;

/*============================================================================
FUNCTION:     main()

============================================================================*/
int main(void)
{

filter = BANDPASS;

switch (filter)
{
case BANDSTOP: BandStopFilter(); break;
case LOWPASS:  LowPassFilter();  break;
case HIGHPASS: HighPassFilter(); break;
case BANDPASS: BandPassFilter(); break;

}

while(1);  
}

Enum Definition and Use



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4271224 CPL

Lab 18
Conclusions

Enumerations provide a means of 
associating a list of constants with one or 
more variables
Make code easier to read and maintain
Variables declared as enum are essentially 
still int types



© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL Slide      
428

Section 1.19
Macros with #define



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4291224 CPL

Macros with #define

Macros
Are evaluated by the preprocessor
Are not executable code themselves
Can control the generation of code before the 
compilation process
Provide shortcuts

Definition

MacrosMacros are text replacements created with #define that are text replacements created with #define that 
insert code into your program.  Macros may take parameters insert code into your program.  Macros may take parameters 
like a function, but the macro code and parameters are like a function, but the macro code and parameters are 
always inserted into code by text substitution.always inserted into code by text substitution.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4301224 CPL

Macros with #define
Simple Macros

Text substitution as seen earlier
Syntax

#define #define label textlabel text

Every instance of label in the current file will be 
replaced by text
text can be anything you can type into your editor
Arithmetic expressions evaluated at compile time

Example

#define#define FoscFosc 40000004000000
#define#define TcyTcy (0.25 * (1/Fosc))(0.25 * (1/Fosc))
#define#define Setup Setup InitSystem(FoscInitSystem(Fosc, 250, 0x5A), 250, 0x5A)



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4311224 CPL

Macros with #define
Argument Macros

Create a function-like macro
Syntax

#define #define labellabel((argarg11,,……,,argargnn)) codecode

The code must fit on a single line or use '\' to split lines
Text substitution used to insert arguments into code
Each instance of label() will be expanded into code
This is not the same as a C function!

Example

#define#define min(xmin(x, y) ((x)<(, y) ((x)<(y)?(x):(yy)?(x):(y))))
#define#define square(xsquare(x) ((x)*(x))) ((x)*(x))
#define#define swap(xswap(x, y) { x ^= y; y ^= x; x ^= y; }, y) { x ^= y; y ^= x; x ^= y; }



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4321224 CPL

Macros with #define
Argument Macros – Side Effects

Example

#define#define square(asquare(a) ((a)*(a))) ((a)*(a))

Extreme care must be exercised when using macros.Extreme care must be exercised when using macros.
Consider the following use of the above macro:Consider the following use of the above macro:
i = 5;i = 5;
x = x = square(isquare(i++);++);

x = 30x = 30
i = 7i = 7

Results:Results:
x = x = square(isquare(i++);++);

expands to:expands to:

x = ((i++)*(i++));x = ((i++)*(i++));

So i gets incremented twice, not So i gets incremented twice, not 
once at the end as expected.once at the end as expected.

Wrong Answers!Wrong Answers!



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4331224 CPL

On the CDOn the CD
……\\101_ECP101_ECP\\Lab19Lab19\\Lab19.mcwLab19.mcw

Lab 19
#define Macros



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4341224 CPL

Lab 19
#define Macros

Open the project’s workspace:
On the lab PCOn the lab PC
C:C:\\RTCRTC\\101_ECP101_ECP\\Lab19Lab19\\Lab19.mcwLab19.mcw

11 Open MPLABOpen MPLAB®® IDE and select IDE and select Open Open 
WorkspaceWorkspace…… from the from the FileFile menu.menu.
Open the file listed above.Open the file listed above.

If you already have a project open in If you already have a project open in 
MPLAB IDE close it by selecting MPLAB IDE close it by selecting 
Close WorkspaceClose Workspace from the from the FileFile menu menu 
before opening a new one.before opening a new one.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4351224 CPL

Lab 19
#define Macros

Compile and run the code:

22 Click on the Click on the Build AllBuild All button.button.

Compile (Build All)Compile (Build All) RunRun22 33

33 If no errors are reported,If no errors are reported,
click on the click on the RunRun button.button.

HaltHalt44

44 Click on the Click on the HaltHalt button.button.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4361224 CPL

Lab 19
#define Macros

/*----------------------------------------------------------------------------
MACROS

----------------------------------------------------------------------------*/
#define square(m) ((m) * (m))
#define BaudRate(DesiredBR, FoscMHz) ((((FoscMHz * 1000000)/DesiredBR)/64)-1)

/*============================================================================
FUNCTION:     main()

============================================================================*/
int main(void)
{

x = square(3);
printf("x = %d\n", x);

SPBRG = BaudRate(9600, 16);
printf("SPBRG = %d\n", SPBRG);

}

#define Macro Definition and Use



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4371224 CPL

Lab 19
Conclusions

#define macros can dramatically simplify 
your code and make it easier to maintain
Extreme care must be taken when crafting 
a macro due to the way they are 
substituted within the text of your code



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4381224 CPL

Resources
A Selection of C Compilers

Microchip Technology MPLAB® C30 and MPLAB® C18
(Free 'student' versions available)
http://www.microchip.com
Hi-Tech PICC™, PICC-18™, C for dsPIC®/PIC24
http://www.htsoft.com
Custom Computer Services Inc. (CCS) C Compilers
http://www.ccsinfo.com
ByteCraft Ltd. MPC
http://www.bytecraft.com
IAR Systems Embedded Workbench
http://www.iar.com
Small Device C Compiler (Free)
http://sourceforge.net/projects/sdcc/
SourceBoost BoostC™
http://www.sourceboost.com/



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4391224 CPL

Resources
Books – General C Language

The C Programming Language
2nd Edition (March 22, 1988) 
Brian W. Kernighan & Dennis Ritchie
ISBN-10: 0131103628
ISBN-13: 978-0131103627

SAMS Teach Yourself C in 21 Days
6th Edition (September 25, 2002) 
Bradley L. Jones & Peter Aitken
ISBN-10: 0672324482 
ISBN-13: 978-0672324482 

Beginning C From Novice to Professional
4th Edition (October 19, 2006) 
Ivor Horton
ISBN-10: 1590597354  
ISBN-13: 978-1590597354 



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4401224 CPL

Resources
Books – General C Language

Programming Embedded Systems
with C and GNU Development Tools
2nd Edition (October 1, 2006)  
Michael Barr & Anthony Massa
ISBN-10: 0596009836
ISBN-13: 978-0596009830 

Practical C Programming
3rd Edition (August 1, 1997) 
Steve Oualline
ISBN-10: 1565923065 
ISBN-13: 978-1565923065 

Code Complete
2nd Edition (June 2004)  
Steve McConnell
ISBN-10: 0735619670 
ISBN-13: 978-0735619678

Not about C 
specifically, but a 
must read for all 
software engineers



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4411224 CPL

Resources
Books – PIC® MCU Specific

Programming 16-Bit PIC Microcontrollers in C
Learning to Fly the PIC24
1st Edition (March 16, 2007)
Lucio Di Jasio
ISBN-10: 0750682922
ISBN-13: 978-0750682923  

Embedded C Programming and the Microchip PIC
1st Edition (November 3, 2003)  
Richard H. Barnett, Sarah Cox, Larry O'Cull
ISBN-10: 1401837484
ISBN-13: 978-1401837488

PICmicro MCU C:
An Introduction to Programming the Microchip PIC in CCS C
2nd Edition (August 19, 2002)  
Nigel Gardner
ISBN-10: 0972418105
ISBN-13: 978-0972418102 



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4421224 CPL

Resources
Books – Compiler Specific

MPLAB® C30 C Compiler User's Guide
Current Edition (PDF)
Microchip Technology
DS51284F
http://www.microchip.com

MPLAB® ASM30 LINK30 and Utilities User's Guide
Current Edition (PDF)  
Microchip Technology
DS51317F
http://www.microchip.com

The Definitive Guide to GCC
2nd Edition (August 11, 2006)  
William von Hagen
ISBN-10: 1590595858
ISBN-13: 978-1590595855

MPLAB® C30
Compiler

User’s Guide

MPLAB® ASM30,
LINK30 and 

Utilities
User’s Guide

MPLAB® C30 is 
based on the 
GCC tool chain



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4431224 CPL

MPASM™
MPLINK™
MPLIB™

User’s Guide

MPLAB® C18
Compiler

User’s Guide

Resources
Books – Compiler Specific

MPLAB® C18 C Compiler User's Guide
Current Edition (PDF)
Microchip Technology
DS51288J
http://www.microchip.com 

MPASM™ MPLINK™ and MPLIB™ User's Guide
Current Edition (PDF) 
Microchip Technology
DS33014J
http://www.microchip.com

The older books on C are much more relevant to embedded C The older books on C are much more relevant to embedded C 
programming since they were written back when PCs and other compprogramming since they were written back when PCs and other computers uters 
had limited resources and programmers had to manage them carefulhad limited resources and programmers had to manage them carefully.ly.



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4441224 CPL

Thank you!Thank you!Thank you!



© 2008 Microchip Technology Incorporated. All Rights Reserved. Slide  4451224 CPL

Trademarks
The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KeeLoq, 
KeeLoq logo, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, rfPIC and 
SmartShunt are registered trademarks of Microchip Technology Incorporated in 
the U.S.A. and other countries.
FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and 
The Embedded Control Solutions Company are registered trademarks of 
Microchip Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, 
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, 
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB 
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM, PICDEM.net, PICtail, 
PIC32 logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, 
Select Mode, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of 
Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
All other trademarks mentioned herein are property of their respective companies.
© 2008, Microchip Technology Incorporated. All Rights Reserved.


