2> >>>>ggg>>>>m

YOU + MICROCHIP ENGINEERING THE FUTURE TEEETHEH

1224 CPL

Embedded C Programming
Introduction to The C
Programmlng Language

.‘gﬁﬂ Agenda

m History of C

= Fundamentals of C
m Data Types
m Variables, Constants and Arrays
m Keywords
= Functions (Overview)
m Declarations

m printf() Library Function (Special use in this
class)

© 2008 Microip Technology Incorporated . All Rights Reserved . 1224 CP Slige 2

Mgﬂ Agenda

m Operators and Conditional Statements
= Statements and Expressions

m Control Statements: Making Decisions
= Functions

= Program Structure

m Arrays and Strings

= Pointers and Strings

m Structures and Unions

m Additional Features of C

© 2008 Microship Technology Incorporated. All Rights Reserved. 1224 Cry Slide 3

b

J],_, n:hl ,.u.u ng

\ v ASTERE
: J‘:J{.L:Tq / 0

22> >>>>;gg>>>>m \

YOU + MICROCHIP ENGINEERING THE FUTURE TEEETHEH

Section 1.0
Using C in an Embedded
Environment

© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL

mg;gg Just the Facts

CONFERENCE

= C was developed in 1974 in order to write
the UNIX operating system

= C is more "low level” than other high level
languages (good for MCU programming)

m C is supported by compilers for a wide
variety of MCU architectures

m C can do almost anything assembly
language can do

= C is usually easier and faster for writing
code than assembly Ianguage

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL . Slide 5

1\ Busting the Myths

¥
NonraREnos The truth shall set you free...

= C is not as portable between architectures
or compilers as everyone claims
= ANSI language features ARE portable
m Processor-specific libraries are NOT portable

m Processor-specific code (peripherals, 1/0,
interrupts, special features) are NOT portable

m C is NOT as efficient as assembly

= A good assembly programmer can usually do
better than the compiler, no matter what the
optimization level — C WILL use more memory

© 2008 Micro@hip Technology Incorporated . All Rights Reserved : 1224 Crg Slide 6

1\ Busting the Myths

¥
NonraREnos The truth shall set you free...

m There is NO SUCH THING as self-
documenting code — despite what many C
proponents will tell you

= C makes it possible to write very confusing
code — just search the net for obfuscated C
code contests... (www.ioccc.org)

= Not every line needs to be commented, but
most blocks of code should be
= Because of many shortcuts available, C is
not always friendly to new users — hence
the need for comments!

© 2008 Microéhip Technology Incorporated . All Rights Reserved. 1224 CPL Slige 7

..;Qfs.n Development Tools Data Flow

CONFERENCE

C Source Files

C Compiler

9

Compiler
Driver

Assembly Source Files
Program

(-asm or .s)

Assembly Source Files @[Assembler
(-asm or .s)

Archiver
(Librarian)
Object File Libraries

Object . Executable
Files

(A';ﬁ:::rez; Linker Memory Map
@”{ MPLAB® IDE
Linker Script Debug Tool
(.Ikr or .gld) COFF
Debug File

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CP,_t: 31 : Slige 8

..;Qfs.n Development Tools Data Flow

CONFERENCE

4 C Compiler)

C Source File EBH[Preprocessor @C Header File

Compiler

Assembly Source File

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CP,_t: 31 : Slige 9

Mgaa C Runtime Environment

CONFERENCE

m C Compiler sets up a runtime environment
m Allocates space for stack
m Initialize stack pointer
m Allocates space for heap

m Copies values from Flash/ROM to variables in
RAM that were declared with initial values

m Clear uninitialized RAM
m Disable all interrupts
= Call main() function (where your code starts)

© 2008 Microship Technology Incor rporated . All Rights Reserved : 1224 Crg Slide, 10

Mgaa C Runtime Environment

CONFERENCE

= Runtime environment setup code is
automatically linked into application by
most PIC® MCU compiler suites

m Usually comes from either:
m crt0.s / crt0.o (crt = C RunTime)
m startup.asm / startup.o

m User modifiable if absolutely necessary

m Details will be covered in compiler specific
classes

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. =~ 1224 CPL

@ Fundamentals of C

TeNrEntNoE A Simple C Program

Preprocessor Header File
Directives l

» ZiInclude <stdio.h>

Constant Declaration
(Text Substitution Macro)

» Zdefine Pl 3.14159 <«

(int main(void)
{

float radius, area; «—— Variable Declarations

Function< //Calculate area of circle «— Comment
radius = 12.0;

area = Pl * radius * radius;
printf(""Area = %f'', area);

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slide, 12

ROIL10101010

>>>>>>z_ga_>>>>>m N

YOU + MICROCHIP ENGINEERING THE FUTURE TOGETHER

Section 1.1
Comments

© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL Slide 13

N

o Comments

Definition

Comments are used to document a program's functionality
and to explain what a particular block or line of code does.

Comments are ignored by the compiler, so you can type
anything you want into them.

= Two kinds of comments may be used:

® Block Comment

/* This is a comment */

= Single Line Comment

// This is also a comment

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& " g - Slide, 14

@ Comments

qE
o renince Using Block Comments

= Block comments:
= Begin with /* and end with */
= May span multiple lines

/**

* Program: hello.c

* Author: R. Ostapiuk
**/

#include <stdio.h>

/* Function: main() */
int main (void)

{

printf (“Hello, world'\n”); /* Display “Hello, world!'” */
}

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slide, 15

ﬁ\ Comments

]
Nionrananos Using Single Line Comments

= Single line comments:
m Begin with // and run to the end of the line

= May not span multiple lines

//
// Program: hello.c

// Author: R. Ostapiuk

//
#include <stdio.h>

// Function: main ()
int main (void)
{
printf (“Hello, world!'\n”); // Display “Hello, world!”

}

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CF’,-JT 9 Slide, 16

ﬂ\ Comments

qE
TeNrEntNoE Nesting Comments

= Block comments may not be nested within
other delimited comments

= Single line comments may be nested

Example: Single line comment within a delimited comment.
/%

code here // Comment within a comment
/)

Example: Delimited comment within a delimited comment.

code here /* Comment within a comment

@EOde here /* Comment within a.. oops!

Dangling delimiter causes compile error

@/ Delimiters don’t match up as intended! \
*;

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slide, 17

Comments

-
T UnFanaN ok Best Practices

/**

* Program: hello.c

* Author: R. Ostapiuk
**/

#include <stdio.h>

/**

* Function: main|()
**/
int main(void)
{

/*

int i; // Loop count variable

char *p; // Pointer to text string

*/

printf (“Hello, world!'\n”); // Display “Hello, world!”

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP:iT :3*; - Slide, 18

b

J],_, n:hl ,.u.u ng

\ v ASTERE
: J‘:J{.L:Tq / 0

22> >>>>;gg>>>>m \

YOU + MICROCHIP ENGINEERING THE FUTURE TEEETHEH

Section 1.2
Variables, Identifiers, and
Data Types

© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL

ﬁ\ﬂ Variables and Data Types

TeNrEntNoE A Simple C Program

#include <stdio_.h>
zZdefrne Pl 3.14159

— 1INt main(void)
Data

Types

Ffloat radius, area; «— Variable Declarations

//Calculate area of circle

radius = 12.0;

area = Pl * radius * radilusSie ygriables
printf("Area = %f'", area);«— inuse

© 2008 Microghip Technology Incorporated. All Rights Reserved. 1224 Cry Slide, 20

ag\m‘ Variables

CONPERENOE

Definition

A variable is a name that represents one or more
memory locations used to hold program data.

m A variable may be thought of as a container that
can hold data used in a program

int myVariable; 4\\6

myVariable = 5;

MyVariap le

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& " g - Slide, 21

M&ﬂ Variables

m Variables are names for
storage locations in = DataMemory (RAM) ¢
memory

int warp factor;

char first letter; X

float length; { 5.74532370373175

x 1044

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slide, 22

M&ﬂ Variables

m Variable declarations
consist of a unique = DataMemory (RAM)
identifier (name)...

int warp factor;

char first letter; X

float length; { 5.74532370373175

x 1044

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slide, 23

M&ﬂ Variables

m ...and a data type
m Determines size 1= Data Memory (RAM) 5

m Determines how values
are interpreted

int warp factor;

char first letter; X

X 10-44

float length; { 5.74532370373175

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slide, 24

M&ﬂ Identifiers

= Names given to program elements
such as:

m Variables

= Functions

m Arrays

m Other elements

© 2008 Microip Technology Incorporated . All Rights Reserved . 1224 CP Slitle. 25

o\

NVASTE
CONFERENCE

Identifiers

m Valid characters in identifiers:

Identifier
First Character J — Remaining Characters
‘ 7 (underscore) ‘ 7 (underscore)
‘A! to IZ! ‘A! to IZ!
£a5 to ‘Z! £a5 to ‘Z!
EO! to £9!

m Case sensitive!
m Only first 31 characters significant®

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPg

Slide, 26

M&ﬂ ANSI| C Keywords

auto double 1int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

= Some compiler implementations may define
additional keywords

© 2008 Microth ip Technology Incorporated . All Rights Reserved . 1224 CPMIT b Slide, 27

ﬁ\ Data Types

Nonrininos Fundamental Types

Description

char single character

int integer
float single precision floating point number
double double precision floating point number

The size of an int varies from compiler to compiler.
« MPLAB® C30 int is 16-bits

« MPLAB C18 int Is 16-bits

« CCS PCB, PCM & PCH int Is 8-bits

e Hi-Tech PICC int Is 16-bits

© 2008 Microghip Technology Incorporated. All Rights Reserved. 1224 Cry Slide, 28

%\ Data Type Qualifiers

N reRtnos Modified Integer Types

Qualifiers: unsigned, signed, short and long
Qualified Type

unsigned char

char, signed char -128
unsigned short Int 0
short Int, signed short Int _32768
unsigned Int 0

int, signed Int 32768
unsigned long Int 0
long int, signed long Int _231
unsigned long long INnt 0
long long INt, 931
signed long long Int

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 CPIL . Slide, 29

ﬁ\ Data Type Qualifiers

&
Rttt Modified Floating Point Types

Qualified Type Absolute Min Absolute Max

float

double ¥
long double

MPLAB® C30: Mdouble is equivalent to long
double if =Fno-short-double is used

MPLAB C30 Uses the IEEE-754 Floating Point Format
MPLAB C18 Uses a modified IEEE-754 Format

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slidg, 30

@ Variables

VMASTERS -
CONFERENCE How to Declare a Variable

type 1dentifier,, identifier,,..,identifier;

m A variable must be declared before it can be
used

m The compiler needs to know how much space to
allocate and how the values should be handled
Example

int x, y, z;
float warpFactor;

char text buffer[10];
unsigned index;

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slide, 31

@ Variables

MASTE H
CONFERENCE How to Declare a Variable

Variables may be declared in a few ways:

One declaration on a line
type i1dentifier;

One declaration on a line with an initial value
type 1dentifier = InitialVvalue;

Multiple declarations of the same type on a line
type identifier,, identifier,, identifier,;

Multiple declarations of the same type on a line with initial values
type i1dentifier; = Value,, tdentifier, = Value,;

© 2008 I\/Iicroch._ip Technology Incorporated. All Rights Reserved. 1224 CP& 5& = Slide, 32

@ Variables

VMASTERS -
CONFERENCE How to Declare a Variable

Examples

unsigned int x;

unsigned y = 12;

int a, b, c¢;

long int myVar = 0x12345678;

long z;

char first = 'a', second, third =
float big number = 6.02e+23;

letter is lower case. If the name is made up of multiple words, all words after the first will

It is customary for variable names to be spelled using "camel case", where the initial
start with an upper case letter (e.g. myLongVarName).

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL . Slide, 33

@ Variables

VMASTERS -
CONFERENCE How to Declare a Variable

= Sometimes, variables (and other program
elements) are declared in a separate file
called a header file

m Header file names customarily end in .h

m Header files are associated @
with a program through the il IC T
#include directive @

MyProgram.c

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slide, 34

Mg-s #include Directive

= Three ways to use the #include directive:

#include <file.h>

Look for file in the compiler search path

The compiler search path usually includes the compiler's directory
and all of its subdirectories.

For example: C:\Program Files\Microchip\MPLAB C30*.*

#include “file.h”
Look for file in project directory only

#include “c:\MyProject\file.h”
Use specific path to find include file

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP_JT 9 Slide, 35

W\ #include Directive

AT main.h Header File and main.c Source File

unsigned int a; » #include <main.h>
unsigned int b;

unsigned int c; int main (void)

{

_5;

The contents of main.h 2;

are effectively pasted into
main.c starting at the
#include directive’s line

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slide, 36

W\ #include Directive

MASTERE i ; .
CONFERENCE Equivalent main.c File

m After the preprocessor
runs, this is how the

compiler sees the unsigned int a;
unsigned int b;

main.c file))
unsigned int c;
® The contents of the
header file aren’t int main (void)

actually copied to your §
main source file, but it
will behave as if they
were copied

a 5;
b 2;
Cc a+b;

Equivalent main.c file
without #include

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slide, 37

45\

NVASTE
CONFERENCE

On the CD
...\101_ECP\Lab01\Lab01.mcw

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slide, 38

@ Lab 01

i
Ndranince Variables and Data Types

= Open the project’s workspace:
. On the lab PC
C:\RTC\101_ECP\Lab01\Lab01.mcw

ST @) Open MPLAB® IDE and select Open
5@ Edit View Project Debudg Workspace from the Flle menu.
Open the file listed above.

If you already have a project open in
MPLAB IDE, close it by selecting

Close Workspace from the File menu
before opening a new one.

Save Workspace

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slide, 39

@ Lab 01

¥
Nonrininos Variables and Data Types

= Compile and run the code:

© Compile (Build All) € Run @ Halt

s Test - MPLAB IDE v7.51 - [MPLAB IDE Editor]
] File Edit View Project Debugger Programmer Tools Configure Window Help

O = S odh R 7 Release v o' & o =5 0x53938 ‘ L [T Eli |

€) Click on the Build Al button.

If no errors are reported,
click on the Run button.

0 Click on the Halt button.

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP:iT :3*; - Slide, 40

ﬁ\ Lab 01

¥
Nonrininos Variables and Data Types

= Expected Results (1):

Build || Yerzion Contral | Find in Files | MPLAB SIk | SIM Uart

A characterwariable requires 1 bnte

A shortwariable requires £ bytes

An integerwanahle requires & lytes

A long wariable requires 4 bytes
Afloating pointwariable requires 4 bwtes
A double vanahle requires 4 bytes

W

e The SIM Uartl window should show the text that
is output by the program, indicating the sizes of

C’s data types in bytes.

© 2008 Microghip Technology Incorporated. All Rights Reserved. 1224 CPL Slide, 41

ﬁ\ Lab 01

¥
Nonrininos Variables and Data Types

= Expected Results (2):

ADICHS __C30_UART v

2ddress Symbol Name Value Decimal

OBnn charVariakble Ox32

OBARC shortWVariabkle i

OBAE intVariekle

[Wf=3=1a longVariakle ®x000000 i
O8B4 floatVariable 0.00000 1112014E48
OBER doubleVariakble 0.0000a0 1112014848

0 The watch window should show the values which
are stored in the variables and make it easier to
visualize how much space each one requires in
data memory (RAM).

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slide, 42

45\

NVASTE
CONFERENCE

0x08A9
0x08AB
0x08AD
0x08AF
0x08B1
0x08B3
0x08B5
0x08B7
0x08B9
0x08BB

0x08BD

Lab 01

Variables and Data Types

16-bit Data Memory

© 2008 Micro&hip Technology Incorporated. All Rights Reserved.

e Variables in Memory

0x08A8
0x08AA ¢== char

0x08AC 4== short int
0x08AE @¢== int

0x08B0 _
long int
0x08B2

0x08B4 Multi-byte values
float stored in "Little
0x08B6 S

Endian" format

on PIC®

0x08B8
double microcontrollers

0x08BA

0x08BC

1224 Cry Sliéig, 43

@ Lab 01

]
o Variables and Data Types

m What does the code do?

(START) Example lines of code from the demo program:
a2
Declare Constant #define CONSTANT1l 50
n 2
Declare Variables int i1ntVariable;
n 2
Initialize Variables intVariable = CONSTANT]1;
Print Variable printf ("\nAn integer variable
Sizes requires 3%d bytes.",

sizeof (int)) ;

Loop -

Forever

while (1) ;

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP_JT 9 Slide, 44

ﬁ\ Lab 01

MASTERS -
CONFERENGE Conclusions

m Variables must be declared before used
= Variables must have a data type
m Data type determines memory use

m Most efficient data types:
= int on 16-bit architectures®

= char on 8-bit architectures

= Don't use float/double unless you really
need them

© 2008 Micro@hip Technology Incorporated . All Rights Reserved : 1224 Crg Slide, 45

2}

o . -
X 9 = -
J],_, n:hl ,.u.u ng

_ "-'_‘1__"'.—1"_)

01 L L1 0101010

22> >>>>;gg>>>>m \

YOU + MICROCHIP ENGINEERING THE FUTURE TEEETHEH

Section 1.3
Literal Constants

© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL

ﬁ\ A Simple C Program

-
NN FaRince Literal Constants

unsigned int a;
unsigned int c;
#define b 2

void main (void)

{

a + b;

Cc
printf ("a=%d, b=%d, c=%d\n", a, b, c);

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slide, 47

N

NVASTE
CONFERENCE

Literal Constants

Definition

A literal or a literal constant is a value, such as a
number, character or string, which may be assigned to a

variable or a constant. It may also be used directly as a
function parameter or an operand in an expression.

m Literals
m Are "hard coded” values
= May be numbers, characters or strings

= May be represented in a number of formats
(decimal, hexadecimal, binary, character, etc.)

= Always represent the same value (5 always
represents the quantity five)

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CP,_t: Slide, 48

@ Constant vs. Literal

VARTREE What's the difference?

= Terms are used interchangeably in most
programming literature

m A literal is a constant, but a constant is not
a literal
m idefine MAXINT 32767

mconst i1nt MAXINT = 32767,

m For purposes of this presentation:
m Constants are labels that represent a literal

m Literals are values, often assigned to symbolic
constants and variables

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL b Slide, 49

Mgﬂ Literal Constants

= Four basic types of literals:
= Integer
= Floating Point
m Character
m String
= Integer and Floating Point are numeric
type constants:
= Commas and spaces are not allowed
= Value cannot exceed type bounds
= May be preceded by a minus sign

© 2008 Micro@hip Technology Incorporated . All Rights Reserved : 1224 Crg Slide, 50

@ Integer Literals

al
41 M Decimal (Base 10)

m Cannot start with 0 (except for 0 itself)
m Cannot include a decimal point
m Valid Decimal Integers:

O 5 127 -1021 65535
= Invalid Decimal Integers:

32,767 25.0 1 024 0552

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL b Slide, 51

@ Integer Literals

=i
I;ﬂnmlgﬂﬂl Hexadecimal (Base 16)

= Must begin with 0x or 0X (that’s zero-x)
= May include digits 0-9 and A-F / a-f
m Valid Hexadecimal Integers:

Ox Ox1l OxOAZ2B OxBEEF

= Invalid Hexadecimal Integers:

0x5.3 OEAl12 OxEG 53h

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPg

Slide, 52

@ Integer Literals

a
Nonrininos Octal (Base 8)

m Must begin with 0 (zero)
= May include digits 0-7
= Valid Octal Integers:
0 01 012 073125
= Invalid Octal Integers:

05.3 0o0l2 080 530

@ Integer Literals

al
Rttt Binary (Base 2)

= Must begin with Ob or 0B (that’s zero-b)
= May include digits 0 and 1
= Valid Binary Integers:

Ob Obl 0b0101001100001111

= Invalid Binary Integers:
0bl.0 01100 Obl2 10b

ﬁ\ Integer Literals

NARTES Qualifiers

= Like variables, literals may be qualified
m A suffix is used to specify the modifier
m ‘U’ or ‘U’ for unsigned: 25u
m‘L’ or ‘I’ for long: 25L
= Suffixes may be combined: 0xF5UL
= Note: U must precede L

m Numbers without a suffix are assumed to
be sighed and short

= Not required by all compilers

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. =~ 1224 CPL

R\ Floating Point Literals

al
41 M Decimal (Base 10)

m Like decimal integer literals, but
decimal point is allowed

m ‘e’ notation Is used to specify
exponents (ketn ® k-10*")

m Valid Floating Point Literals:
2.56e-5 10.4378 48e8 0.5

= Invalid Floating Point Literals:
Ox5Ae-2 02.41 F2.33

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slide, 56

Mgﬂ Character Literals

m Specified within single quotes (')
= May include any single printable character

= May include any single non-printable

character using escape sequences (e.g.
'"\0' = NULL) (also called digraphs)

m Valid Characters: 'a', 'T', '\n', '5"',
'@'r Y v (space)

= Invalid Characters: 'me', '23"', ' ""

© 2008 Microship Technology Incorporated. All Rights Reserved. 1224 Cry Slide, 57

M&ﬂ String Literals

m Specified within double quotes (")

m May include any printable or non-printable
characters (using escape sequences)

m Usually terminated by a null character ‘\ 0’

m Valid Strings: "Microchip", "Hi\n",
"PIC", "2500","rob@microchip.com",
"He said, \"Hi\""

m Invalid Strings: "He said, "Hi""

o\

NVASTE
CONFERENCE

String Literals

Declarations

m Strings are a special case of arrays

m |[f declared without a dimension, the null

character is automatically appended to the
end of the string:

Example 1

char color[3] = "RED";

Is stored as:

color[0] 'R’
color|1] 'E'
color[2] 'D'

© 2008 Micro@hip Technology Incorporated. All Rights Reserve

d.

1224 CPg

Example 2

char color|[] = "RED";
Is stored as:

color[0]
color|1]
color[2]
color|[3]

'R
B!
'D'
|\0|

Slide, 59

%\ String Literals

¥
Rt How to Include Special Characters in Strings

Escape Sequence Character ASCII Value

BELL (alert)
Backspace
Horizontal Tab
Newline (Line Feed)
Vertical Tab

Form Feed

Carriage Return

Quotation Mark (")
Apostrophe/Single Quote (')
Question Mark (?)
Backslash (\)

Null

© 2008 Micro@hip Technology Incorporated. All Rights Reserve d. 1224 CPg Slide, 60

ﬁ\ String Literals

al
Rt How to Include Special Characters in Strings

Example

char message[] = "Please enter a command.\n"

= This string includes a newline character

m Escape sequences may be included In a
string like any ordinary character

m The backslash plus the character that
follows it are considered a single
character and have a single ASCII value

© 2008 Microghip Technology Incorporated. All Rights Reserved. 1224 Cry Slide, 61

2}

o . -
X 9 = -
J],_, n:hl ,.u.u ng

. A\ -. .__1_ S

01 L L1 0101010

22> >>>>;gg>>>>m \

YOU + MICROCHIP ENGINEERING THE FUTURE TEEETHEH

Section 1.4
Symbolic Constants

© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL

N

wiaS =R Symbolic Constants

Definition

A constant or a symbolic constant is a label that
represents a literal. Anywhere the label is encountered

in code, it will be interpreted as the value of the literal it
represents.

m Constants

m Once assigned, never change their value
= Make development changes easy
= Eliminate the use of "magic numbers"”

= Two types of constants
= Text Substitution Labels
= Variable Constants (!!??)

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CP:iT

h) Slitle, 63

@ Symbolic Constants

AR Constant Variables Using const

m Some texts on C declare constants like:

Example

const float PI = 3.141593;

® This is not efficient for an embedded
system: A variable is allocated in program

memory, but it cannot be changed due to
the const keyword

m This is not the traditional use of const

= In the vast majority of cases, it is better to
use #define for constants

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. =~ 1224 CPL

@ Symbolic Constants

R Text Substitution Labels Using #define

m Defines a text substitution label
Syntax

#define label text

m Each instance of label will be replaced with text by the
preprocessor unless label is inside a string

= No memory is used in the microcontroller

Example

#define PI 3.14159
#define mol 6.02E23

#define MCU "PIC24FJ128GA010"
#define COEF 2 * PI

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP_JT 9 Slide, 65

@ Symbolic Constants

o
Yo raRinoe #define Gotchas

m Note: a #define directive is NEVER

terminated with a semi-colon (;), unless
you want that to be part of the text
substitution.

Example

#define MyConst@

c = MyConst + 3;

C

M"g\ﬂ Symbolic Constants

CUNFRRINGE Initializing Variables When Declared

m A constant declared with const may not

be used to initialize a variable when it is
declared

Example

#define CONSTANT1 5
const CONSTANTZ2 = 10;

int variablel = CONSTANTI1;
int variable?2;
// Cannot do: int variable2 = CONSTANTZ2

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slide, 67

45\

NVASTE
CONFERENCE

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slide, 68

@ Lab 02

R
Yo raRinoe Symbolic Constants

= Open the project’s workspace:
. On the lab PC
C:\RTC\101_ECP\Lab02\Lab02.mcw

ST @) Open MPLAB® IDE and select Open
5@ Edit View Project Debudg Workspace from the Flle menu.
Open the file listed above.

If you already have a project open in
MPLAB IDE, close it by selecting

Close Workspace from the File menu
before opening a new one.

Save Workspace

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slide, 69

@ Lab 02

R
Yo raRinoe Symbolic Constants

= Compile and run the code:

© Compile (Build All) € Run @ Halt

s Test - MPLAB IDE v7.51 - [MPLAB IDE Editor]
] File Edit View Project Debugger Programmer Tools Configure Window Help

O = S odh R 7 Release v o' & o =5 0x53938 ‘ L [T Eli |

€) Click on the Build Al button.

If no errors are reported,
click on the Run button.

0 Click on the Halt button.

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP:iT :3*; - Slide, 70

ﬁ\ Lab 02

R
Yo raRinoe Symbolic Constants

= Expected Results (1):

Build | %erzion Contral | Find in Files | MPLAE SIk | SIM Uartd

The first constant is 0x33
The second constant is 0xCC

W

e The SIM Uartl window should show the text that
is output by the program, indicating the values of
the two symbolic constants in the code.

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slide, 71

ﬁ\ Lab 02

R
Yo raRinoe Symbolic Constants

= Expected Results (2):

CONSTANT1 has Add SER| |ADTCHS s | | Add Symbol] |__C30 LART «

no address 2ddress Symbol Mame Value Decimal
i wvarieblel 0x0033 51

CONSTANT2 has a f wvariableZ Qw0 0oC 204
COMSTANT1 033 -

program memory s 2 71107 CONSTANTZ 0x00CC 204
address (F)

0 The watch window should show the two symbolic
constants declared in code. CONSTANT1 was

declared with #define, and therefore uses no
memory. CONSTANT2 was declared with const

and is stored as an immutable variable in Flash

program memory.

© 2008 Microghip Technology Incorporated. All Rights Reserved. 1224 CPL . Slide, 72

@ Lab 02

R
Yo raRinoe Symbolic Constants

= Expected Results (3):

2ddress
01122 37BOSF S7BOFF 37BS0F 37B3SE
011B0 060000 FROOOO #£48E80 884620
011B2 200330 781F80 251D20 TELlFE0
011C0 07F&873 S787E4 FS31D0 231EE0
c 2 7JFS6E 578724 37FFFF
06854 002065 006366
TOTTTI—002074 00&F63 00T36E

011E0 006174 00746E 006920 002073
011E2 007830 005225 O0O0000R 00854
11 L0 faluledal == faTal =t ko] Fa T o Tl e OnsASE

Opcode Hex | Machine | Symbolic | PSY Mized | PSY Data

e If we look in the program memory window, we
can find CONSTANT2 which was created with

const at address 0x011D0 (as was shown in the
watch window)

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP,JT 9 Slide, 73

ﬁ\ Lab 02

R
Yo raRinoe Symbolic Constants

= Expected Results (4):

External Symbols in Program Memory (by name) :

| 0x0011d0 CONSTANT2
0x000el6 Atexit
0x000bO9c Closreg

lab02.map 0x00057¢ DNKf£flush
0x0012d8 DefaultInterrupt
~~ A AAAAAAAAAAAAAAAA S

CONSTANT1 does not appear anywhere in the map file

€©) it we open the map file (in the 1ab02 project
directory), we can see that memory has been
allocated for CONSTANT2 at 0x011DO0, but nothing

has been allocated for CONSTANT1.

© 2008 Microghip Technology Incorporated. All Rights Reserved. 1224 CPL b Slide, 74

ﬁ\ Lab 02

MASTERS -
CONFERENGE Conclusions

m Constants make code more readable
m Constants improve maintainability

m #define should be used to define
constants

m #define constants use no memory, so they
may be used freely

m const should never be used in this context
(it has other uses...)

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL . Slide, 75

2}

o . -
X 9 = -
J],_, n:hl ,.u.u ng

_ "-'_‘1__"'.—1"_)

01 L L1 0101010

22> >>>>;gg>>>>m \

YOU + MICROCHIP ENGINEERING THE FUTURE TEEETHEH

Section 1.5
printf() Function

© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL

R\ printf ()

]
o Standard Library Function

m Used to write text to the "standard output™
= Normally a computer monitor or printer

m Often the UART in embedded systems

= SIM Uart1 window in MPLAB® SIM

Build | “ersion Contral | Find in Files | MPLAE Sl | Sk Ulart]

ADCOML = 251
Wl = 52

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slide, 77

R\ printf ()

]
o Standard Library Function

m Everything printed verbatim within string except %d's
which are replaced by the argument values from the list

Example

int a = 5, b =10; _———
printf("a = %d\nb = %d\n", a, b);
\ /

Result:

a=>5h
b=10

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP_JT Slide, 78

Conversion
Character

S
d
o
u
X
X
f
e
E
g
G

printf ()

Conversion Characters for Control String

Meaning

Single character

String (all characters until \0')
Signed decimal integer
Unsigned octal integer

Unsigned decimal integer
Unsigned hexadecimal integer with lowercase digits (1a5e)

As x, but with uppercase digits (e.g. 1A5E)

Signed decimal value (floating point)

Signed decimal with exponent (e.g. 1.26e-5)

As e, but uses E for exponent (e.g. 1.26E-5)

As e or £, but depends on size and precision of value
As g, but uses E for exponent

© 2008 Microhip Technology Incorporated. All Rights Reserved. 1224 CP_L Slide. 79

R\ printf ()

=Y
N reRtnos Gotchas

= The value displayed is interpreted entirely
by the formatting string:
printf ("ASCII = %d", 'a');
will output: ASCII 97
A more problematic string:
printf ("Value = 3d", 6.02e23);
will output: Value 26366

= Incorrect results may be displayed if the
format type doesn't match the actual data
type of the argument

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slide, 80

R\ printf ()

=
o RNE Useful Format String Examples for Debugging

= Print a 16-bit hexadecimal value with a
"0Ox" prefix and leading zeros if necessary
to fill a 4 hex digit value:

printf ("Address of x = %#06x\n", x ptr);
Specifies that a 0x or 0X should precede a hexadecimal value (has
other meanings for different conversion characters)

06 Specifies that 6 characters must be output (including 0x prefix),
zeros will be filled in at left if necessary

x Specifies that the output value should be expressed as a
hexadecimal integer

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slide, 81

R\ printf ()

=
o RNE Useful Format String Examples for Debugging

= Same as previous, but force hex letters to
uppercase while leaving the 'x' in '0x’
lowercase:

printf ("Address of x = 0x%04X\n", x ptr);

04 Specifies that 4 characters must be output (no longer including 0x

prefix since that is explicitly included in the string), zeros will be
filled in at left if necessary

X Specifies that the output value should be expressed as a
hexadecimal integer with uppercase A-F

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slide, 82

45\

NVASTE
CONFERENCE

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slide, 83

ﬂ Lab 03

NYRTIer printf () Library Function

= Open the project’s workspace:
. On the lab PC
C:\RTC\101_ECP\Lab03\Lab03.mcw

ST @) Open MPLAB® IDE and select Open
5@ Edit View Project Debudg Workspace from the Flle menu.
Open the file listed above.

If you already have a project open in
MPLAB IDE, close it by selecting

Close Workspace from the File menu
before opening a new one.

Save Workspace

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slide, 84

@ Lab 03

NYRTIer printf () Library Function

= Compile and run the code:

© Compile (Build All) € Run @ Halt

s Test - MPLAB IDE v7.51 - [MPLAB IDE Editor]
] File Edit View Project Debugger Programmer Tools Configure Window Help

O = S odh R 7 Release v o' & o =5 0x53938 ‘ L [T Eli |

€) Click on the Build Al button.

If no errors are reported,
click on the Run button.

0 Click on the Halt button.

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP:iT :3*; - Slide, 85

ﬁ\ Lab 03

NRAINer printf () Library Function

= Expected Results (1):

Build | “ersion Control | Find in Filez | MPLAE Sik | S8 Uart

2h as decimal (d): £5

'a' as character (c): a

‘a' as decimal (d): 97

2.5bh as float {f): £.550000

2.hb as decimal (d): 16414

b.0Z2e2d as exponent (e): b.OZ0000e+23

b.0ZeZd as decimal (d): 2babh

'‘"icrochip' as string (s): Micrachip

'‘"icrochip' as decimal (d): -24058 z

e The SIM Uartl window should show the text that
is output by the program by printf (), showing

the how values are printed based on the
formatting character used in the control string.

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPg Slide, 86

@ Lab 03

NYRTIer printf () Library Function

= Expected Results (2):

Detailed Analysis:

Line of Code From Demo Project Output

printf ("25 as decimal (d): %d\n", 25);| 25
printf("'a' as character (c): %c\n", 'a'); a
printf("'a' as decimal (d): %d\n", 'a'); |97
printf ("2.55 as float (f): %$£f\n", 2.55) ;| 2.550000
printf ("2.55 as decimal (d): %d\n", 2.55); | 16419
printf ("6.02e23 as exponent (e): %e\n", 6.02e23) ;| 6.020000e+23
printf ("6.02e23 as decimal (d): %d\n", 6.02e23) ;| 26366
printf (" 'Microchip' as string (s): %$s\n", "Microchip") ; | Microchip

printf (" 'Microchip' as decimal (d): %d\n", "Microchip") ;| -24058

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CF’,-JT 9 Slide, 87

ﬁ\ Lab 03

MASTERS -
CONFERENGE Conclusions

m printf() has limited use in embedded
applications themselves

m It is very useful as a debugging tool

= It can display data almost any way you
want

= Projects that use printf() must:
m Configure a heap (done in MPLAB®IDE)

® Include the stdio.h header file

ROIL10101010

>>>>>>z_ga_>>>>>m N

YOU + MICROCHIP ENGINEERING THE FUTURE TOGETHER

Section 1.6
Operators

© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL Slide 89

ﬂ Operators

al
Rt How to Code Arithmetic Expressions

Definition

An arithmetic expression is an expression that contains
one or more operands and arithmetic operators.

m Operands may be variables, constants or
functions that return a value

= A microcontroller register is usually treated as
a variable

m There are 9 arithmetic operators that may
be used
= Binary Operators: +, -, *, /, %
= Unary Operators: +, -, ++, —-

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CP,_t: 31 : Slide, 90

%\ Operators

=
NN Fantnos Arithmetic

Operator Operation

Multiplication Product of x and y

Division Quotient of x and y

Modulo Remainder of x divided by y
Addition Sumofxandy

Subtraction Difference of x and y
Positive Value of x

Negative Negative value of x

NOTE - An int divided by an int returns an int:
10/3=3

Use modulo to get the remainder:

10%3 =1

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 CPg Slide, 91

@ Operators

al
o Division Operator

= If both operands are an integer type, the result
will be an integer type (int, char)

= If one or both of the operands is a floating point
type, the result will be a floating point type (float,
double)

Example: Integer Divide
int a = 10;

int b = 4;
float c;

Example: Floating Point Divide

int a = 10;
float b = 4.0f;
float c;

c =a / b;
c =2.000000 X

Because: int/ int ® int

c =a/ b;
c =2.500000 v~

Because: float / int ®» float

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slide, 92

@ Operators

a
"YeureRinon Implicit Type Conversion

= [n many expressions, the type of one
operand will be temporarily "promoted” to
the larger type of the other operand

// x promoted to float

m A smaller data type will be promoted to the
largest type in the expression for the
duration of the operation

© 2008 Microghip Technology Incorporated. All Rights Reserved. 1224 Cry Slide, 93

Operators

RS
Lot Implicit Arithmetic Type Conversion Hierarchy

long double

double

float

unsigned long long
long long

unsigned long

long

unsigned int

int

Smaller types converted to
largest type in expression

unsigned char

char

© 2008 Micro&hip Technology Incorporated. All Rights Reserved.

1224 CP,LI_

Slide, 94

%\ Operators

&
WeNRRINeS Arithmetic Expression Implicit Type Conversion

= Example implicit type conversions

Assume x is defined as:
short x = -5;

Expression Implicit Type Conversion

x IS promoted to int

x IS promoted to long
because -2Lis a long

x IS promoted to int

x IS promoted to int

x IS promoted to double
because 8.0 isadouble

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 CPIL

Expression's Type Result
int

long

int
int
double

Slide, 95

@ Operators

al
"eeuraRinos Applications of the Modulus Operator (%)

®m Truncation: x $ 2 where n is the desired word
width (e.g. 8 for 8 bits: x & 256)

m Returns the value of just the lower n-bits of x

m Can be used to break apart a number in any base
into its individual digits

Example

#define MAX DIGITS 6

long number = 123456;
int i, radix = 10; char digits[MAX DIGITS] ;

for (1 ; 1 < MAX DIGITS; i++)

{
if (number == 0) break;
digits[i] = (char) (number % radix) ;
number /= radix;

}

© 2008 Microghip Technology Incorporated. All Rights Reserved. 1224 Cry Slide, 96

@ Operators

MASTER 4 ;
e Arithmetic: Increment and Decrement
Operator Operation Example Result

Use x then increment x by 1
Increment

Increment x by 1, then use x

Use x then decrement x by 1
Decrement

Decrement x by 1, then use x

Prefix Example

© 2008 Microghip Technology Incorporated. All Rights Reserved. 1224 Cry Slide, 97

ﬂ Operators

al
Rt How to Code Assignment Statements

Definition

An assignment statement is a statement that assigns a
value to a variable.

= Two types of assighment statements
= Simple assignment
variable = expression;

The expression is evaluated and the result is
assigned to the variable

= Compound assignment
variable = variable op expression;

The variable appears on both sides of the =

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CP,_t: 31 : Slide, 98

%\ Operators

o H Assignment

Operator Operation Example

Assignment

Compound
Assignment

KKK KKK KK

© 2008 Microhip Technology Incorporated. All Rights Reserved. 1224 CPg

Result

Assign x the value of y

XX X X X X X X X X

XX X X X X XN

Slide, 99

@ Operators

al
donraninoe Compound Assignment

m Statements with the same variable on each
side of the equals sign:

Example

X =X + vy,

This operation may be thought of as: The new value of x will be
set equal to the current value of x plus the value of y

m May use the shortcut assignment
operators (compound assignment):

Example

X += vy, //Increment x by the value y

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL . Slideg100

@ Operators

"YeureRinon Compound Assignment

int x = 2; //Initial value of x is 2

X *= 5; //x = x * 5

Before statement is executed: x =2

After statement is executed: x =10
*= 5.
Is equivalentto: x = (x * 5);
Evaluate right side first: (2 * 5);
Assign result to x: 10;

© 2008 Microghip Technology Incorporated. All Rights Reserved. 1224 Cry Slideg 101

%\ Operators

T{DHFIIEHE‘F Relational
Operator Operation Example Result (FALSE =0, TRUE # 0)

Less than lifxlessthany,elseO

Less than or 1 if x less than or equal to y,
equal to else 0

Greater than 1 if x greater than y, else O

Greater than 1 if x greater than or equal to y,
or equal to else O

Equal to lifxequaltoy,elseO

Not equal to ! 1 if x not equal to y, else O

In conditional expressions, any non-zero value is
interpreted as TRUE. A value of 0 is always FALSE.

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 CP_L \ Slides102

@ Operators

VT Difference Between = and ==

Be careful not to confuse = and ==.
They are not interchangeable!

m = |s the assignment operator
x = 5 assigns the value 5 to the variable x

m == |s the 'equals to' relational operator
x == 5 tests whether the value of xis §
if (x == 5)
{

doif value of xi1s 5
}

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CP, 4 tT .‘\-:\ Slides 103

@ Operators

VARG Difference Between = and ==

= What happens when the following code is
executed?

Example

void main (void)

{
int x = 2; //Initialize x
if (x = 5) //If x is 5, ..
{

printf ("Hi!'") ; //.display "Hi!"

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slideés104

@ Operators

VASTREE Logical

Operator Operation Example Result (FALSE =0, TRUE # 0)

Logical AND 1ifbothx# 0andy#0,
else 0

Logical OR Oif bothx=0andy =0,
else 1

Logical NOT ! lifx=0,else0

In conditional expressions, any non-zero value is
interpreted as TRUE. A value of 0 is always FALSE.

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slideg105

%\ Operators

VASTESS Bitwise

Operator Operation Example Result (for each bit position)

If 1 in both x and y
if 0 In x or y or both

If 1 in x or y or both
if 0 in both x and y

Bitwise AND

Bitwise OR

If 1 in x or y but not both

Bitwise XOR if 0 or 1in both x and y

ifOin x
if1inx

Bitwise NOT

(One's Complement)

1,
0,
1,
0,
1,
0,
1,
0,

= The operation is carried out on each bit of
the first operand with each corresponding
bit of the second operand

© 2008 Microhip Technology Incorporated. All Rights Reserved. 1224 CPg Slidés106

@ Operators

A
Ndranince Difference Between & and &&

Be careful not to confuse & and &s.
They are not interchangeable!

m & IS the bitwise AND operator
0b1010 & 0bl1101 =» 0b1000

m && IS the logical AND operator

0b1010 && 0b1101 = 0b0001 (TRUE)
<Non-Zero Value> && <Non-Zero Value> = 1 (TRUE)

if (x && y)
{

do if x and y are both TRUE (non-zero)

© 2008 Microéhip Technology Incorporated . All Rights Reserved . el CP 4 JT 9 Slides107

ﬁ\ Operators

A
Ndranince Difference Between & and &&

= What happens when each of these code
fragments are executed?

Example 1 — Using A Bitwise AND Operator

char x = 0bl1010;
char y = 0b0101;
if (x & y) printf("Hi!'") ;

Example 2 — Using A Logical AND Operator

char x = 0b1010;
char y = 0b0101;
if (x && y) printf("Hi!");

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg 108

@ Operators

VT Logical Operators and Short Circuit Evaluation

= The evaluation of expressions in a logical
operation stops as soon as a TRUE or
FALSE result is known

Example

If we have two expressions being tested in a logical AND operation:
exprl && expr2

The expressions are evaluated from left to right. If exprl is 0 (FALSE), then
expr2 would not be evaluated at all since the overall result is already known
to be false.

Truth Table for AND (&&) = €XPrl | expr2 | Result | expr2 is not evaluated
FALSE =0 0 X(0) 0 in the first two cases

0 X (1) 0
1 0 0
1 1 1

TRUE =1

since its value is not
relevant to the result.

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPIT . Slideg109

@ Operators

VT Logical Operators and Short Circuit Evaluation

= The danger of short circuit evaluation

If z =0, then c will not be evaluated

if '((z = x +vy) & (¢ = a + b))

{
z += 5;

c += 10, <= Initial value of c may not be correct

It is perfectly legal in C to logically compare two assignment expressions in
@ this way, though it is not usually good programming practice.
A similar problem exists when using function calls in logical operations, which
is a very common practice. The second function may never be evaluated.

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slideg110

@ Operators

s
':‘ﬂﬂmlgﬂﬂl Shift

Operator Operation Example Result

<< Shift Left x << y Shift x by y bits to the left

>> Shift Right x >> y Shift x by y bits to the right

Shift Left Example:
x = 5; // x = 0b00000101 =
y =x << 2; [// y = 000010100 = 20

|
§)

= In both shift left and shift right, the bits
that are shifted out are lost

= For shift left, 0's are shifted in (Zero Fill)

i chnology Incorporated. All Rights Reserved. 1224 Crg Slidegl111

@ Operators

Rto b Shift — Special Cases

m Logical Shift Right (Zero Fill)

If X is UNSIGNED (unsigned char in this case):
x = 250; // x = 0b11111010 = 250
y =x >> 2; [/ y = 0b00111110 = 62

= Arithmetic Shift Right (Sign Extend)

If X is SIGNED (char in this case):
X = -6; // x = 0bl11111010 = -6
y =x > 2; [// y = 0bl1l1111110 = -2

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP, i 5& = Slides112

@ Operators

RS
Rt Power of 2 Integer Divide vs. Shift Right

= If you are dividing by a power of 2, it will
usually be more efficient to use a right
shift instead

o 0001010} » O0O0OO0OO0OO0OT1TTO0 1

10,, Right Shift 5.4

= Works for integers or fixed point values

© 2008 Microghip Technology Incorporated. All Rights Reserved. 1224 CPL . Slideg113

@ Operators

ASTERE
"donranEnoE Power of 2 Integer Divide vs. Shift in MPLAB® C30

Example: Divide by 2 Example: Right Shift by 1

int x = 20; int x = 20;
int y; int y;
v =x / 2; y =10 y = x >> 1; y=10

10: y=x/ 2; 9: y =x >> 1;
804000 mov.w 0x0800,0x0000 00282 804000 mov.w 0x0800,0x0000
200022 mov.w #0x2,0x0004 00284 DES8042 asr 0x0000,#1,0x0000
090011 repeat #17 00286 884010 mov.w 0x0000,0x0802
D80002 div.sw 0x0000,0x0004
884010 mov.w 0x0000,0x0802

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg114

T Operators
conrEmiNet Power of 2 Integer Divide vs. Shift in MPLAB® C18

Example: Divide by 2 Example: Right Shift by 1

int x = 20
int y;
Yy =X >> 1; y=10

y=x/2; 9: y=x > 1;

MOVFF 0x8c, 0x8a 0122 MOVFF 0x8c, 0x8a
NOP 0124 NOP

MOVFF 0x8d, 0x8b 0126 MOVFF 0x8d, 0x8b
NOP 0128 NOP

MOVLW 0x2 012a MOVLB 0

MOVWF Oxd, ACCESS 012cC BCF 0xfd8, 0, ACCESS
CLRF Oxe, ACCESS 012E RRCF 0x8b, F, BANKED
MOVFF 0x8a, 0x8 0130 RRCF 0x8a, F, BANKED

NOP

MOVFF 0x8b, 0x9
NOP

CALL Oxd6, O
NOP

MOVFF 0x8, 0x8a

NOP
;:g‘f‘-‘" 0x9, 0x8b 16-Bit Shift on 8-Bit Architecture

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slidés115

o\

MVASTER
CONFERENCE

Operator Operation

Address of

Indirection

Subscripting

Struct / Union
Member

Struct / Union
Member by
Reference

Operators
Memory Addressing

Example

Result

Pointer to x

The object or function that p
points to

The y™" element of array x

The member named y in the
structure or union x

The member named y in the
structure or union that p
points to

These operators will be discussed later in the sections on
arrays, pointers, structures, and unions. They are included
here for reference and completeness.

© 2008 Micro@hip Technology Incorporated. All Rights Reserved.

1224 CPg

Slideg116

%\ Operators

T Other

Operator Operation Example Result

Function Call Passes control to the
function with the
specified arguments

sizeof Sjze of an The number of bytes x
object or type occupies in memory
In bytes

Explicit type (short) x Converts the value of x
cast to the specified type

Conditional : : The value of y Iif x IS true,
expression else value of z

Sequential Evaluates x then y, else
evaluation result is value of y

© 2008 Microhip Technology Incorporated. All Rights Reserved. 1224 CPg Slides117

@ Operators

R
YdNrininos The Conditional Operator

(test-expr) ? do-i1f-true : do-i1f-false;

Example

= 5;

1= 0) °
printf ("%d is odd\n", x)
printf ("%d is even\n", x);

Result:
5 is odd

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP_JT 9 Slides118

@ Operators

R
YdNrininos The Conditional Operator

X = (condition) ? A : B;

X = A If condition is true
X = B if condition is false

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slideg119

@ Operators

]
Nonrininos The Explicit Type Cast Operator

m Earlier, we cast a literal to type float by
enteringitas: 4.0f

m We can cast the variable instead by using
the cast operator: (type)variable

Example: Integer Divide Example: Floating Point Divide
int x = 10; int x = 10;
float vy float y;

vy =x/ 4; y = (float)x / 4;

y =2.000000 X y =2.500000 v

Because: int/ int ® int Because: float / int ® float

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides120

%\ Operators

Ny Precedence

Operator Description Associativity

Parenthesized Expression
Array Subscript L eft-to-Right
Structure Member

Structure Pointer

Unary + and — (Positive and Negative Signs)
Increment and Decrement

Logical NOT and Bitwise Complement
Dereference (Pointer)

Address of

Right-to-Left

sizeof Sjze of Expression or Type
(type) Explicit Typecast

Continued on next slide...

© 2008 Microhip Technology Incorporated. All Rights Reserved. 1224 CP_L Slides121

o\

CONFERENCE

Operator

Operators
Precedence

Description

Multiply, Divide, and Modulus

Add and Subtract
Shift Left and Shift Right

Less Than and Less Than or Equal To
Greater Than and Greater Than or Equal To
Equal To and Not Equal To

Bitwise AND

Bitwise XOR

Bitwise OR

Logical AND

Logical OR

Conditional Operator
Continued on next slide...

© 2008 Microhip Technology Incorporated. All Rights Reserved. 1224 CP_L

Associativity
Left-to-Right
Left-to-Right
Left-to-Right
Left-to-Right
Left-to-Right
Left-to-Right
Left-to-Right
Left-to-Right
Left-to-Right
Left-to-Right
Left-to-Right
Right-to-Left

Slideg122

%\ Operators

e Precedence

Operator Description Associativity

Assignment

Addition and Subtraction Assignments
Division and Multiplication Assignments

Modulus Assignment Right-to-Left
Shift Left and Shift Right Assignments

Bitwise AND and OR Assignments

Bitwise XOR Assignment

Comma Operator Left-to-Right

= Operators grouped together in a section have
the same precedence — conflicts within a section
are handled via the rules of associativity

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 CPIL . Slides123

@ Operators

Ny Precedence

= When expressions contain multiple
operators, their precedence determines
the order of evaluation

Expression Effective Expression
a - (b * ¢)
a + (++b)

a + ((++b) *)

If functions are used in an expression, there is no set order of
evaluation for the functions themselves.

eg. x = £() + g()
There is no way to know if £() or g () will be evaluated first.

© 2008 Micro@hip Technology Incorporated. All Rights Reserve d. 1224 CPL Slidey124

@ Operators

gt Associativity

= If two operators have the same
precedence, their associativity determines
the order of evaluation

Expression Associativity Effective Expression
Left-to-Right

Right-to-Left

Right-to-Left

= You can rely on these rules, but it is good
programming practice to explicitly group
elements of an expression

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slideg125

e\ o

NVASTE
CONFERENCE

© 2008 I\/IicrocQLip Technology Incorporated. All Rights Reserved. 1224 CP* i

Slidey126

@ Lab 04

VARG Operators

= Open the project’s workspace:
. On the lab PC
C:\RTC\101_ECP\Lab04\Lab04.mcw

ST @) Open MPLAB® IDE and select Open
5@ Edit View Project Debudg Workspace from the Flle menu.
Open the file listed above.

If you already have a project open in
MPLAB IDE, close it by selecting

Close Workspace from the File menu
before opening a new one.

Save Workspace

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slides127

Lab 04 ..

m
o renince Operators

Solution: Steps 1 and 2

[BB R R R R R R R R R R
STEP 1: Add charVariablel to charVariable2 and store the result in
charVariablel. This may be done In two ways. One uses the
ordinary addition operator, the other uses a compound assignment
operator. Write two lines of code to perform this operation
twice - once for each of the two methods.
Don*"t forget to end each statement with a semi-colon!
W T T T T T R R T T R T

//Add using addition operator

charVariablel = charVariablel + charVariable2;
//Add using compound assignment operator
charVariablel += charVariable2;

[HH AR T T T R T R T R R T
STEP 2: Increment charVariablel. There are several ways this could be

done. Use the one that requires the least amount of typing.

HH T R R R R R /

//Increment charVariablel
charVariablel++;

© 2008 Micro@gip Technology Incorporated. All Rights Reserved. 1224 Crg . - _— - Slideg128

Lab 04 ..

m
o renince Operators

Solution: Steps 3 and 4

[BB R R R R R R R R R R
STEP 3: Use the conditional operator to set longVariablel equal to

intVariablel 1t charVariablel i1s less than charVariable2.

Otherwise, set longVariablel equal to intVariable2

NOTE: The comments below are broken up into 3 lines, but the code you

need to write can fit on a single line.

HHHHH T R R R R T R R R

//1f charVariablel < charVariable2, then
//1longVariablel = intVariablel, otherwise

//longVariablel = intVariable2
longVariablel = (charVariablel < charVariable2) ? intVariablel : intVariable2;

[HHH R R R R T R T T R R R R T T R R R
STEP 4: Shift longVariable2 one bit to the right. This can be accomplished
most easily using the appropriate compound assignment operator.

HHHHH R R R T R R T R R T R R R

//Shift longVariable2 one bit to the right
longVariable2 >>= 1;

© 2008 Micro@gip Technology Incorporated. All Rights Reserved. 1224 Crg . - _— - Slideg129

Lab 04 "

m
o renince Operators

Solution: Step 5

[HH AR T T T R R R R

STEP 5: Perform the operation (longVariable2 AND 0x30) and store the result
back 1n longVariable2. Once again, the easiest way to do this is
to use the appropriate compound assignment operator that will
perform an equivalent operation to the one In the comment below.

HHHHHH T T R R

//1longVariable2 = longVariable2 & 0x30
longVariable2 &= 0x30;

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& ﬁ Slides130

ﬁ\ Lab 04

MASTERS -
CONFERENGE Conclusions

= Most operators look just like their normal
mathematical notation

m C adds several shortcut operators in the
form of compound assignments

= Most C programmers tend to use the
shortcut operators

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slidés131

2}

o . -
X 9 = -
J],_, n:hl ,.u.u ng

. A\ -. .__1_ S

01 L L1 0101010

22> >>>>;gg>>>>m \

YOU + MICROCHIP ENGINEERING THE FUTURE TEEETHEH

Section 1.7

Expressions and
Statements

© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL

M&ﬂ Expressions

m Represents a single data item (e.qg.
character, number, etc.)

m May consist of:
= A single entity (a constant, variable, etc.)

= A combination of entities connected by
operators (+, -, *, / and so on)

© 2008 Microéhip Technology Incorporated . All Rights Reserved . 1224 CPL Slides133

@ Expressions

MASTER
CONFERENCE Examples

a + b

X =Y
speed = dist/time
z = ReadInput()

c <=7

X == 25
count++
d=a+ 5

M&ﬂ Statements

m Cause an action to be carried out

= Three kinds of statements in C:
m Expression Statements
m Compound Statements

m Control Statements

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slidés135

Mg;ﬂ Expression Statements

CONFERENCE

= An expression followed by a semi-colon

m Execution of the statement causes the
expression to be evaluated

Examples

a =95+ 1;

y = (m * x) + b;
printf ("Slope = %f", m);

4

Mg;ﬂ Compound Statements

CONFERENCE

m A group of individual statements enclosed
within a pair of curly braces { and }

= Individual statements within may be any
statement type, including compound

m Allows statements to be embedded within
other statements

m Does NOT end with a semicolon after }

m Also called Block Statements

© 2008 Microghip Technology Incorporated. All Rights Reserved. 1224 CPL Slideg137

@ Compound Statements

I;ﬂnmlgﬂg‘l Exam ple

float start, finish;

start = 0.0;

finish = 400.0;

distance = finish - start;

time = 55.2;

speed = distance / time;

printf ("Speed = %$f m/s", speed) ;

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slidey138

Mg;ﬂ Control Statements

CONFERENCE

m Used for loops, branches and logical tests

m Often require other statements embedded
within them
Example
while (distance < 400.0)
{

printf ("Keep running!");
distance += 0.1;

@ (while syntax: while expr statement)

i chnology Incorporated. All Rights Reserved. 1224 Crg Slideg139

s
o -
\ .‘/

aic n:hl Jju ng p

._ ___1_ JI__ 8

= ﬂ =

“RENCE ' 0
MR 11)1010

22> >>>>;gg>>>>m \

YOU + MICROCHIP ENGINEERING THE FUTURE TEEETHEH

Section 1.8
Making Decisions

© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL

M&ﬂ Boolean Expressions

= C has no Boolean data type

m Boolean expressions return integers:
m 0 if expression evaluates as FALSE
m non-zero if expression evaluates as TRUE
(usually returns 1, but this is not guaranteed)

int main (void)

{
X =95,vy, z;

y = (X > 4) ; ¢uuum— y=1 (TRUE)
z = (x > 6);
while (1); =~ z=0 (FALSE)

© 2008 Microéhip Technology Incorporated . All Rights Reserved . 1224 CPL Slides141

ﬁ\ﬂ Boolean Expressions

donraninoe Equivalent Expressions

m |[f a variable, constant or function call is
used alone as the conditional expression:
(MyVar) or (Foo())

m This is the same as saying:
(MyVar '= 0) or (Foo() '= 0)
m In either case, if MyVar # 0 or Foo () # 0,

then the expression evaluates as TRUE
(non-zero)

= C Programmers almost always use the
first method (laziness always wins in C)

© 2008 Microship Technology Incorporated. All Rights Reserved. 1224 Cry Slideg142

..,QE., if Statement

Syntax

if (expression) statement

m expression is evaluated for boolean
TRUE (#0) or FALSE (=0)

m [f TRUE, then statement is executed

@ Whenever you see statement in a if (expression)

syntax guide, it may be replaced by a
compound (block) statement.

{

statement,
Remember: spaces and new lines are statement,
not significant.

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP_JT 9 Slides143

@ if Statement

MASTERS :
CONPERENCE Flow Dlagram
Syntax

if (expression) statement

expression #0
TRUE

expression

statement

FALSE
expression=0

(' END)

© 2008 I\/Iicroch._ip Technology Incorporated. All Rights Reserved. 1224 CP& 5& = Slides144

Mg;ﬂ if Statement

CONFERENCE

int x = 5;

1f (x) If x is TRUE (non-zero)...
{

printf ("x = %d\n", x); ..then print the value of x.

}
while (1);

}

= What will printif x=57 ...ifx=0?
..f X =-827?

...If X =655367

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg145

W\ i £ Statement

RS
donraninoe Testing for TRUE

mif (x) vs.i1f (x == 1)
mif (x) only needs to test for not equal to 0
mif (x == 1) needs to test for equality with 1

® Remember: TRUE is defined as non-zero, FALSE is
defined as zero

Example: if (x) Example: if (x ==1)

if (x) if (x == 1)

8: if (x) 11: if (x == 1)

011B4 E208C2 cp0.w 0x08c2 011CcO0 804610 mov.w 0x08c2,0x0000
011B6 320004 bra z, 0x0011cO 011Cc2 500FE1l sub.w 0x0000,#1, [0x001e]
011c4 3Aa0004 bra nz, 0x00llce

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 CPL . Slideg147

Mgﬂ Nested if Statements

int power = 10;
float band = 2.0;
float frequency = 146.52;

if (power > 5)
{
if (band == 2.0)
{
if ((frequency > 144) && (frequency < 148))

{
printf ("Yes, it's all true!\n");

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg 148

..;Qfs.u if-else Statement

CONFERENCE

if (expression) statement,

else statement,

m expression is evaluated for boolean
TRUE (#0) or FALSE (=0)

m If TRUE, then statement, is executed
m If FALSE, then statement, is executed

@ if-else Stafement

MASTERS -
CONFERENOE Flow D|agram

if (expression) statement,

else statement,

expression #0

TRUE
expression

statement1

FALSE
expression=0

statem.ent2 I

(END)

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserve 1224 CP& Slidés150

i

.‘.S;ﬂ if-else Statement

float frequency = 146.52; //frequency in MHz

if ((frequency > 144.0) && (frequency < 148.0))
{

printf ("You're on the 2 meter band\n") ;

}

else

{

printf ("You're not on the 2 meter band\n");

}

© 2008 Microghip Technology Incorporated. All Rights Reserved. 1224 CPL b Slidegl151

..;Qfs.u if-else if Statement

CONFERENCE

if (expression,) statement,

else if (expression,) statement,
else statement,

m expression, is evaluated for boolean TRUE (#0)
or FALSE (=0)

= If TRUE, then statement, is executed

m If FALSE, then expression, is evaluated
= If TRUE, then statement, is executed

m If FALSE, then statement, is executed

© 2008 Microth | ooooooooooooooooooooooo . All Rights Reserved . ERdr Cr 4 tT .‘\-:\ Slidés152

A\ if-else if Statement

MASTERS -
CONFERENOE Flow D|agram

if (expression,) statement,

else if (expression,) statement,
else statement,

expression, statement,

expression, statement, I

FALSE

statement3 I

(END)

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CP:iT

Slid€g153

M&m if-else if Statement

if ((freq > 144) && (freq < 148))

printf ("You're on the 2 meter band\n");
else if ((freq > 222) && (freqg < 225))

printf ("You're on the 1.25 meter band\n") ;
else if ((freq > 420) && (freq < 450))

printf ("You're on the 70 centimeter band\n") ;

else

printf ("You're somewhere else\n");

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP,JT 9 Slides154

e\ o

NVASTE
CONFERENCE

© 2008 I\/IicrocQLip Technology Incorporated. All Rights Reserved. 1224 CP* i

Slidey155

ﬂ Lab 05

VARTRRS Making Decisions (if)

= Open the project’s workspace:
. On the lab PC
C:\RTC\101_ECP\Lab05\Lab05.mcw

ST @) Open MPLAB® IDE and select Open
5@ Edit View Project Debudg Workspace from the Flle menu.
Open the file listed above.

If you already have a project open in
MPLAB IDE, close it by selecting

Close Workspace from the File menu
before opening a new one.

Save Workspace

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slidés156

Lab 05

MASTERE Making Decisions (if)

Solution: Steps 1 and 2

/R R R R
STEP 1: Increment intVariablel i1f BOTH the following conditions are true:

* floatVariable2 i1s greater than or equal to floatVariablel

* charVariable2 i1s greater than or equal to charVariablel

Remember to use parentheses to group logical operations.
HHH T T R R R R/
//\Write the 1T condition
if ((floatVariable2 >= floatVariablel) && (charVariable2 >= charVariablel))

{
intVariablel++; //Increment intVariablel

}

/T R T R T R T T T R R T
STEP 2: 1T the above i1s not true, and floatVariablel i1s greater than 50

then decrement intVariable2. (HINT: else 1T)

HHHHH T T T T T R R R
//\Write the else 1T condition

else if (floatVariablel > 50)

{

intVariable2--; //Decrement intVariable2

}

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& " g - Slides157

Lab 05

VARTERS Making Decisions (if)

Solution: Step 3

[BB R R R R R R R R R R
STEP 3: If neither of the above are true, set charVariable2 equal to 1.

(HINT: else)

W T R T R T T T R T
//\Write the else condition

else

{

charVariable2 = 1; //Set charVariable2 equal to 1

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& 5& = Slides158

ﬁ\ Lab 05

MASTERS -
CONFERENGE Conclusions

m if statements make it possible to
conditionally execute a line or block of
code based on a logic equation

m else if / else statements make it possible to
present follow-up conditions if the first
one proves to be false

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slidés.159

M&ﬂ switch Statement

CONFERENCE

switch (expression)
{

case const-expr,: statements,

case const-expr,: statements,

default: statements,_,,
}

m expression is evaluated and tested for a
match with the const-expr in each case
clause

= The statements in the matching case
clause Is executed

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CF’,-JT 9 Slideés160

@ switch Statement

RE
¢y B Flow Diagram (default)

Const-expr =

expression? statement, I

Notice that each
statement falls

Const-expr,= tatemont I through to the next
expression? &
This is the default
behavior of the
Const-expr,= E— switch statement
expression? n

statement I
n+1l

CE%)

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP_JT 9 Slides161

@ switch Statement

i)
e reninos Flow Diagram (modified)

Const-expr, =
expression?

statementl
break;

Adding a break
statement to each
statement, statement block will
ey eliminate fall
through, allowing
only one case
ety clause’s statement
block to be executed

Const-expr,=
expression?

Const-expr =
expression?

statementn+1 I

(" END)

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP,JT 9 Slides162

45\

NVASTE
CONFERENCE

switch Example 1

switch Statement

switch (channel)

{

case
case
case
case
case
case
case
case
case
case

default:

printf ("WBBM Chicago\n"); break;
printf ("DVD Player\n"); break;

printf ("WITMJ Milwaukee\n"); break;

printf ("WMAQ Chicago\n"); break;

printf ("WITI Milwaukee\n"); break;

printf ("WLS Chicago\n"); break;
printf ("WGN Chicago\n"); break;

printf ("WMVS Milwaukee\n"); break;

printf ("WTTW Chicago\n"); break;

printf ("WISN Milwaukee\n"); break;

printf ("No Signal Available\n");

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPg

4

4

4

4

Slid€g163

o\

NVASTE
CONFERENCE

switch Example 2

switch (letter)
{
case 'a':
printf ("Letter 'a'
break;
case 'b':
printf ("Letter 'b'
break;
case 'c¢':
printf ("Letter 'c'
break;
default:

© 2008 Microghip Technology Incorporated. All Rights Reserved. 1224 Chg

switch Statement

found.\n") ;

found.\n") ;

found.\n") ;

printf ("Letter not in list.\n");

Slideg164

Mgnu switch Statement

switch Example 3

switch (channel)

Apply this case to channel 4, 5,

{
case 4 ... 7:"" 6,and 7

printf ("VHF Station\n"); break;
case 9 ... 12:

printf ("VHF Station\n"); break;
case 3:
case 8:
case 13:

printf ("Weak Signal\n"); break;
case 14 ... 69:

printf ("UHF Station\n"); break;
default:

printf ("No Signal Available\n");

Case 3 and 8 are allowed to fall
through to case 13

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slidés165

e\ ot

CONPERENOE

On the CD
...\101_ECP\Lab06\Lab06.mcw

© 2008 Microggip Technology Incorporated. All Rights Reserved. 1224 Chg i Slid€y166

ﬂ Lab 06

"doNFERINGY Making Decisions (switch)

= Open the project’s workspace:
. On the lab PC
C:\RTC\101_ECP\Lab06\Lab06.mcw

ST @) Open MPLAB® IDE and select Open
5@ Edit View Project Debudg Workspace from the Flle menu.
Open the file listed above.

If you already have a project open in
MPLAB, close it by selecting Close

Workspace from the File menu before
opening a new one.

Save Workspace

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slides167

Lab 06

GONFERENCE Making Decisions (switch)

Solution: Step 1

/R R R T R R R T R R R
TASK: Write a switch statement to print the network®"s initials with the
channel (based on Chicago TV stations).
* If channel = 2, print "CBS 2" to the output window.
* ITf channel = 5, print "NBC 5" to the output window.
* If channel = 7, print "ABC 7' to the output window.
* For all other channels, print "--- #'" to the output window,
where "#" 1s the channel number.
(HINT: Use printf(), and use the newline character "\n" at the end

of each string you print to the output window.)
The switch statement i1s 1n a loop that will execute 9 times. Each
pass through the loop, "channel® will be incremented. The output
window should display a line of text for channels 2 to 10.

HFHIFRHFRHFHFHIEHFRHFHFHI

STEP 1: Open a switch statement on the variable "channel®

T T T T R T T T T T T T T T TR T
//Begin switch statement

switch (channel)

{

© 2008 Micro@gip Technology Incorporated. All Rights Reserved. 1224 Crg . - _— - Slide168

Lab 06

GONFERENCE Making Decisions (switch)

Solution: Steps 2 and 3

/R R R T R R R T R R R
STEP 2: Write case for channel = CBS (CBS i1s a constant defined to equal 2)
W T T T R T T T R T T
case CBS: //1f channel = CBS (CBS = 2)

{

printf ("CBS %d\n", channel); //Display string "CBS 2" followed by newline

break; //Prevent fall through to next case
}

/R R T R T T R T R R R
STEP 3: Write case for channel = NBC (NBC i1s a constant defined to equal 5)
This should look almost identical to step 2.

HHH T R R R R/
case NBC: //1f channel = NBC (NBC = 5)

{

printf ("NBC %d\n", channel); //Display string "NBC 5" followed by newline
break; //Prevent fall through to next case

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& " g - Slides 169

Lab 06

GONFERENCE Making Decisions (switch)

Solution: Steps 4 and 5

/R R R R
STEP 4: Write case for channel = ABC (ABC i1s a constant defined to equal 7)
This should look almost identical to step 2.
W T R T R T T T R T
case ABC: //1f channel = ABC (ABC = 7)
{

printf ("ABC %d\n", channel); //Display string "ABC 7' followed by newline

break; //Prevent fall through to next case
}

[HH AR T R T T T R T R T
STEP 5: Write default case. |If channel i1s anything other than those
listed above, this i1s what should be done. For these cases, you
need to print the string "--- #" where "#" 1s the channel number.
For example, i1f channel = 6, you should print "--- 6.
HHHHHH TR T R R T T R R
default: //For all other channels
{

printf("--- %d\n", channel); //Display string "-—- #'" followed by newline

}

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& " g - Slidés170

R\ Lab 06

MASTERS -
CONFERENGE Conclusions

= switch provides a more elegant decision
making structure than if for multiple

conditions (if — else if — else if — else if...)

m The drawback is that the conditions may
only be constants (match a variable's state
to a particular value)

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slidegl171

ROIL10101010

>>>>>>z_ga_>>>>>m N

YOU + MICROCHIP ENGINEERING THE FUTURE TOGETHER

Section 1.9
Loops

© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL

M@,E... for Loop

CONFERENCE

for (expression,; expression,; expression,)

statement

m expression, initializes a loop count
variable once at start of loop (e.g. 1 = 0)

m expression, is the test condition — the
loop will continue while this is true
(e.g.i <= 10)

m expression, is executed at the end of

each iteration — usually to modify the loop
count varlable (e.g. 1++)

© 2008 MicroGip Technology Incorporated. All Rights erved. 1224 Crg Slideg173

@ for Loop

MASTERS -
CONFERENOE Flow D|agram

for (expression,; expression,; expression,)

statement
START
Initialize loop
variable i=20 expression1 I Modify loop

variable

expression, | i++

TRUE t

statement |

Test loop variable for
exit condition

i < n

expressi onz?

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& Slides174

mgsnﬁ for Loop

Example (Code Fragment)
int 1;

for (i = 0; i < 5; i++)
{

printf ("Loop iteration #%d\n", 1i);

Expected Output:

Loop iteration
Loop iteration
Loop iteration
Loop iteration
Loop iteration

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slidés175

mgsnﬁ for Loop

= Any or all of the three expressions may be
left blank (semi-colons must remain)

m [f expression,; or expression, are
missing, their actions simply disappear

m If expression, is missing, it is assumed
to always be true

Infinite Loops
A for loop without any

expressions will execute
indefinitely (can leave loop
via break statement)

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg176

...Q,E... while Loop

CONFERENCE

Syntax

while (expression) statement

m If expression is true, statement will be
executed and then expression will be re-
evaluated to determine whether or not to
execute statement again

m It is possible that statement will never
execute if expression is false when it is

first evaluated

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CF’,-JT 9 Slides177

2\ while Loop

MASTERS :
CONPERENCE Flow Dlagram
Syntax

while (expression) statement

expression? statement

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& ﬁ Slides178

R\ while Loop
MASTERE
OONFERENOE Example

Example (Code Fragment)

) ; Loop counter initialized
int 1 = 0; _outsideofloop

Loop counter
]] Condition checked at incremented manually
while (i < 5) @ ..\ ofloop iterations inside loop

{
printf ("Loop iteration #%d\n", i++);

Expected Output:

Loop iteration
Loop iteration
Loop iteration
Loop iteration
Loop iteration

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides179

Ns;ﬂ while Loop

m The expression must always be there,
unlike with a for loop

m while is used more often than for when
implementing an infinite loop, though it is
only a matter of personal taste

= Frequently used for main loop of program

Infinite Loops while (1)
A while loop with {

expression =1 will execute
indefinitely (can leave loop
via break statement) }

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg180

...-Q,E... do-while Loop

CONFERENCE

Syntax

do statement while (expression);

m Statement is executed and then
expression is evaluated to determine
whether or not to execute statement

again
m statement will always execute at least

once, even if the expression is false when
the loop starts

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slides181

ﬁ\ do-while Loop

s
Nonrininos Flow Diagram

Syntax

do statement while (expression);
(START)

statement

expression?

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& ﬁ Slides182

2\ do-while Loop
MASTERE
OONFERENOE Example

Example (Code Fragment)

. Loop counter initialized
0; 4= outside of loop

Loop counter
incremented manually
inside loop

!

printf ("Loop iteration #%d\n", i++);

} while (i < 5); 4= Condition checked at
end of loop iterations

Expected Output:

Loop iteration
Loop iteration
Loop iteration
Loop iteration
Loop iteration

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides183

..;QE.: break Statement

CONFERENCE

m Causes immediate termination of a loop
even if the exit condition hasn't been met

= Exits from a switch statement so that
execution doesn't fall through to next case

clause

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CP, ,_t: 31 : Slides184

2\ break Statement

VEARTREY Flow Diagram Within a while Loop

statement

L 2

break

expression?

statement

(" END)

© 2008 I\/Iicroch._ip Technology Incorporated. All Rights Reserved. 1224 CP& 5& = Slides185

W\ break Statement

Ny Example

Example (Code Fragment)

int 1 = 0;

while (1 < 10)

{ Exit from the loop when i = 5.
/ Iteration 6-9 will not be executed.

i++;
if (1 == 5) break;
printf ("Loop iteration #%d\n", i);

Expected Output:

Loop iteration
Loop iteration
Loop iteration
Loop iteration

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides186

ﬁ&.. continue Statement

CONFERENCE

Syntax

continue;

m Causes program to jump back to the
beginning of a loop without completing the
current iteration

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP, i Slides187

@ continue Statement
VARG Flow Diagram Within a while Loop
Syntax

continue;

statement

L 2

continue

expression?

statement

(' END)

© 2008 I\/Iicroch._ip Technology Incorporated. All Rights Reserved. 1224 CP& 5& = Slides188

ﬁ\ continue Statement
MASTERE
CONFEREMOE Example

Example (Code Fragment)

int 1

while (i < 6)
{ Skip remaining iteration when i = 2.
F / Iteration 2 will not be completed.
4
if (1 == 2) continue;
printf ("Loop iteration #%d\n", 1i);

Expected Output:

Loop iteration
Loop iteration
Loop iteration 4
Loop iteration 5

1
5 4mmm lteration 2 does not print

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides189

e\ o

NVASTE
CONFERENCE

© 2008 I\/IicrocQLip Technology Incorporated. All Rights Reserved. 1224 CP* i

Slidey190

A\ Lab 07

Ny Loops

= Open the project’s workspace:
. On the lab PC
C:\RTC\101_ECP\Lab07\Lab07.mcw

ST @) Open MPLAB® IDE and select Open
5@ Edit View Project Debudg Workspace from the Flle menu.
Open the file listed above.

If you already have a project open in
MPLAB IDE, close it by selecting

Close Workspace from the File menu
before opening a new one.

Save Workspace

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slides191

Lab 07-

Ny Loops

Solution: Step 1

/T R T T T T R R T R R T T
STEP 1: Create a for loop to iterate the block of code below. The loop
should do the following:
* Initialize counterl to 1
* Loop as long as counterl is less than 5
* Increment counterl on each pass of the loop
(HINT: for(init; test; action))
FHH A A R S R R S R S
//Write the opening line of the for loop
for(counterl = 1 ; counterl < 5 ; counterl++)
{
intvVariablel *= counterl;
printF(""FOR: intVariablel = %d, counterl = %d\n', intVariablel, counterl);

+
//end of for loop block

© 2008 I\/Iicroct}_ip Technology Incorporated. All Rights Reserved. 1224 CP& 5& = Slides192

Lab 07-

Ny Loops

Solution: Step 2

[HHHHHHHHHH R R R R R R R R R R
STEP 2: Create a while loop to iterate the block of code below. The loop
should run until charVariablel i1s O.
HtHHHHHHH T H R R R R R R R R R R R R R R/
//Loop as long as charVariablel 1s not O
while (charVariablel '= 0)
{

charVariablel--;

charVariable2 += 5;

printFC""WHILE: charVariablel = %d, charVariable2 = %d\n",

charVariablel, charVariable2);

+
//end of while loop block

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& 5& = Slides193

Lab 07-

¢y B LOOpS

Solution: Step 3

S R A R T
STEP 3: Create a do...while loop to i1terate the block of code below.
The loop should run until counterl is greater than 100
W T R T T T T T R R R
do //\Write opening line of do loop
{

counterl += 5;

counter2 = counterl * 3;

printf("'DO: counterl = %d, counter2 = %d\n'', counterl, counter2?);
} while (counterl <= 100); //Write closing line of loop - test counterl
//end of do...while block

© 2008 I\/Iicroct}_ip Technology Incorporated. All Rights Reserved. 1224 CP& 5& = Slides194

ﬁ\ Lab 07

MASTERS -
CONFERENGE Conclusions

= C Provides three basic looping structures

m for — checks loop condition at top,
automatically executes iterator at bottom

= while — checks loop condition at top, you must
create iterator if needed

m do...while — checks loop condition at bottom,
you must create iterator if needed

© 2008 Microéhip Technology Incorporated . All Rights Reserved . 1224 CPL Slidés.195

ROIL10101010

>>>>>>z_ga_>>>>>m N

YOU + MICROCHIP ENGINEERING THE FUTURE TOGETHER

Section 1.10
Functions

© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL

N

NVASTE
CONFERENCE

© 2008 I\/Iicroch._ip Technology Incorporated. All Rights Reserved.

Functions

Program Structure

be merry ()

{

drink () return;

{

be merry ()
return;

1224 CP& s

Slideg197

ﬂ Functions

ASTERS
oNFiRiNGE What is a function?

Definition

Functions are self contained program segments designed
to perform a specific, well defined task.

= All C programs have one or more functions
m The main () function is required

m Functions can accept parameters from the
code that calls them

m Functions usually return a single value

= Functions help to organize a program into
logical, manageable segments

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slides198

@ Functions

ASTERE
ConR RN Remember Algebra Class?

= Functions in C are conceptually like an
algebraic function from math class...

Function Definition

Function Name —» f(X) — ;(2 + 4 +§

1

Function Parameter

m If you pass a value of 7 to the function:
f(7), the value 7 gets "copied" into x and
used everywhere that x exists within the
functlon deflnltlon f(7) 72+ 4*7 + 3 =80

© 2008 Mict ro8kip Technology Incorporated . All Rights Reserved . 1224 Cry __ Slid&s199

@ Function-s

RE
N reRtnos Definitions

Data type of
return expression Parameter List

l Ny (optional)
l ~ ~
—{ type identifier (type, arg,,..,type, arg,)

{

declarations
statements Body
return expression;

T

Return Value (optional)

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP&

Slid€g200

@ Functions

Rt Function Definitions: Syntax Examples

int maximum(int x, int y)

{

int z;

z = (x>vy) ?7 x 1V,
return z;

Example — A more efficient version

int maximum(int x, int y)

{

return ((x >=y) ? x : y);

}

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slideg201

@ Functions

MASTERE . T
OONFERENOE Function Definitions: Return Data Type

type i1dentifier (type, arg,,..,type, arg,)

{
declarations

statements
return expression;

}

= A function's type must match the type of
data in the return expression

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP:iT :3*; - Slides202

@ Functions

al
Rttt Function Definitions: Return Data Type

= A function may have multiple return
statements, but only one will be executed
and they must all be of the same type

Example

int bigger (int a, int b)
{

if (a > b)

return 1;
else
return 0;

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg203

@ Functions

al
Rttt Function Definitions: Return Data Type

= The function type is void if:
m The return statement has no expression
m The return statement is not present at all

= This is sometimes called a procedure
function since nothing is returned

void i1dentifier (type,; arg,,..,type, arg,)
{
declarations
statements
return;

return; may be omitted if
} nothing is being returned

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg.204

@ Functions

MASTERE . . ume
ONFERENCE Function Definitions: Parameters

= A function's parameters are declared just
like ordinary variables, but in a comma
delimited list inside the parentheses

m The parameter names are only valid inside
the function (local to the function)

type i1dentifier (type, arg,,..,type, arg,)
{ ~— ~ -

declarations Function Parameters

statements
return expression;

}

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CF’,-JT 9 Slides205

@ Functions

al
Rto b Function Definitions: Parameters

= Parameter list may mix data types
mint foo(int x, float y, char z)

m Parameters of the same type must be
declared separately — in other words:
Bint maximum(int x, y) will not work

mint maximum(int x, int y) Is correct

int maximum(int x, int y)

{

return ((x >=y) ? X : y):
}

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides206

@ Functions

MASTERS : .
CONFERENOS Function Definitions: Parameters

= If no parameters are required, use the
keyword void in place of the parameter

list when defining the function

Example

type i1dentifier (void)

{
declarations
statements
return expression;

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg207

@ Functions

al
Rttt How to Call / Invoke a Function

Function Call Syntax

= No parameters and no return value
foo() ;

m No parameters, but with a return value
foo() ;

= With parameters, but no return value
foo(a, b);

= With parameters and a return value
x = foo(a, b);

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CF’,JT

Slid€g208

@ Functions

MASTERS :
CONFERENCE Function Prototypes

m Just like variables, a function must be
declared before it may be used

m Declaration must occur before main() or
other functions that use it

m Declaration may take two forms:
m The entire function definition

m Just a function prototype — the function
definition itself may then be placed anywhere
in the program

@ Functions

o]
TyeNrEnEn ot Function Prototypes

= Function prototypes may be take on two
different formats:

= An exact copy of the function header:

Example — Function Prototype 1

int maximum(int x, int y)

m Like the function header, but without the
parameter names — only the types need be
present for each parameter:

Example — Function Prototype 2

int maximum(int, int);

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg210

@ Functions

m
pto e Declaration and Use: Example 1

Example 1

int a =5, b =10, c;

int maximum(int x, int y) Function is

{ declared and
return ((x >=y) ? x : y); *™™ jocined pefore it

} is used in main()

int main (void)
{
¢ = maximum(a, b);
printf ("The max is %d\n", c)

}

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg211

@ Functions

m
pto e Declaration and Use: Example 2

Example 2

int a =5, b =10, c;))
Function is

int maximum(int x, int y); == declared with
prototype before

int main (void) use in main()

{

c = maximum(a, b);
printf ("The max is %d\n", c)

}

int maximum(int x, int y) Function is
{ = (cfined after it is

return ((x >=y) ? x : y);

\ used in main()

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides212

@ Functions

m
donraninoe Passing Parameters by Value

m Parameters passed to a function are
passed by value

= Values passed to a function are copied
into the local parameter variables

= The original variable that is passed to a
function cannot be modified by the
function since only a copy of its value was
passed

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg213

@ Functions

donraninoe Passing Parameters by Value

int a, b, c¢;

int foo(int x, int y)
{
X =x + (++y);
return x;

The value of a is copied into x.

The value of b is copied into y.

main (void) The function does not change
the value of a or b.

5;
10;

© 2008 Microghip Technology Incorporated. All Rights Reserved. 1224 Cry Slideg214

@ Functions

MARTHS Recursion

= A function can call itself repeatedly

m Useful for iterative computations (each
action stated in terms of previous result)

m Example: Factorials (5!=5*4*3*2*1)

long int factorial (int n)

{
if (n <= 1)

return(l) ;

else
return(n * factorial(n - 1)) ;

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg215

@ Functions

MASTERS . . .
S Evaluation of Recursive Functions

= Evaluation of 5!
(based on code from previous slide)

Recursive _ Factorial term Result
iterations of Partial results replaced with result evaluated from
function pushed on stack of expression above = TOS downward

o] 1!=1 |>=1\

1] 21=2*1! |> =2*1;2
31=3*2! |> =3*2;6
4! = 4 * 3! |> =4*6‘=/24
51 =5 *4! =5%24=120

Conceptual evaluation of recursive function

S W N

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CF’,-JT 9 Slides216

@ Functions and Scope

NARTRES Parameters

= A function's parameters are local to the
function — they have no meaning outside

the function itself

m Parameter names may have the same
identifier as a variable declared outside
the function — the parameter names will
take precedence inside the function

These are not the same n.
< \

int n;
long int factorial (int n){..}

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides217

@ - Functions and Scope

Rt Variables Declared Within a Function

m Variables declared within a function block
are local to the function

Example
int x, y, z;

int foo(int n)

{

int a;

The n refers to the function parameter n
a += n;

The a refers to the a declared locally
within the function body

© 2008 Microghip Technology Incorporated. All Rights Reserved. 1224 Cry Slideg218

"ﬁ\ﬂ Functions and Scope

Rt Variables Declared Within a Function

m Variables declared within a function block
are not accessible outside the function

Example
int x;
int foo(int n)
{
int a;
return (a += n);

}

int main (void)

foo(3S) ;' This will generate an error. a may not

a; 4w o occessed outside of the function
where it was declared.

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg219

"ﬁ\ﬂ Functions and Scope

MASTE E
OONFERENCE Global versus Local Variables

int x = 5;

o x can see be seen by everybody J

int foo(int y) —
{ foo's local parameteris y
Sents = o Glc :oo S Iocaltvarlable. |s' Z
return (x + y + 2); oo cannot see main's a
foo can see x -

int main (void) : :
{ main's local variable is a

main cannot see foo's y or z

int a = 2; .
main can see x

x = foo(a);
a = foo(x);

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides220

@ - Functions and Scope

e Parameters

= "Overloading" variable names:
n Declared Locally and Globally n Declared Globally Only

int n; int n;

int foo(int n) int foo(int x)

L/ {

y += n; y += n;
local n

hides
global n

A locally defined identifier takes precedence over a
globally defined identifier.

© 2008 Micro@hip Technology Incorporated. All Rights Reserve d. 1224 CPL . Slideg221

"ﬁ\ﬂ Functions and Scope

gt Parameters
Example m Different functions
int n; may use the same
parameter names
int foo(int n)
{ / m The function will
y += n; only use its own
} parameter by that
name

int bar(int n)

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg222

@ Functions and Scope

AR #define Within a Function

Example

#define x 2

void test (void)

{
#define x 5

printf ("%d\n", x);

}

void main (void)

{

printf ("%d\n", x);
test () ;

© 2008 Micro&hip Technology Incorporated. All Rights Reserved.

1224 CPg

Running this code will
result in the following
output in the Uart1 1O
window:

Why?

Remember: #define is
used by the preprocessor
to do text substitution
before the code is
compiled.

Slideg223

@ Functions

o
T uNrEnance Historical Note

m C originally defined functions like this:

int maximum(x, y)
int x, int y

{
return ((x >=y) ? X : y);

}

m Do not use the old method — use the new
one only:

int maximum(int x, int y)

{

return ((x >=y) ? x : y);
}

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slidew224

e\ o

NVASTE
CONFERENCE

© 2008 I\/IicrocQLip Technology Incorporated. All Rights Reserved. 1224 CP* i

Slidey225

ﬂ Lab 08

VRIS Functions

= Open the project’s workspace:
. On the lab PC
C:\RTC\101_ECP\Lab08\Lab08.mcw

ST @) Open MPLAB® IDE and select Open
5@ Edit View Project Debudg Workspace from the Flle menu.
Open the file listed above.

If you already have a project open in
MPLAB IDE, close it by selecting

Close Workspace from the File menu
before opening a new one.

Save Workspace

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slidew226

Lab 08

VRIS Functions

Solution: Step 1

SR T T R T T T T R R T I A T
STEP 1: Write two function prototypes based on the following information:
+ Function Name: multiply_ function()
- Parameters: int x, Int y
- Return type: int
+ Function Name: divide_ function()
- Parameters: float x, float y
- Return type: float
HHH R R T R R T R R T R R R R

int multiply function(int x, int y); //multiply_function() prototype

float divide function(float x, float y); //divide_function() prototype

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& ﬁ Slidew227

Lab 08

VRIS Functions

Solution: Step 2

[BB R R R R R R R R R R R
STEP 2: Call the multiply_function() and divide_function().
(a) Pass the variables IntvVariablel and intVariable2 to the
multiply function().
(b) Store the result of multiply function() in the variable "product™.
(c) Pass the variables floatVariablel and floatVariable2 to the
divide_function().
(d) Store the result of divide function() in the variable "quotient.
T A A A R T R

//Call multiply function
product = multiply function(intVariablel , intVariable2);

//Call divide function
quotient = divide function(floatVariablel , floatVariable2);

// intQuotient will be O since i1t 1Is an integer
intQuotient = divide_function(floatVariablel , floatVariable2);

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& ﬁ Slides228

Lab 08

Functions

CONPERENOE

Solution: Steps 3 and 4

[HH R R R R R R R R R
STEP 3: Write the function multiply function(). Use the function prototype

you wrote in STEP 1 as the function header. In the body, all you

need to do is return the product of the two Input parameters (X * y)

HHHHBHHHHHHH R H R R R R R R R R R R
//Function Header

int multiply function(int x, int y)
{

return (x * y); //Function Body
}

/R R R R T T R R T R R T
STEP 4: Write the function divide function(). Use the function prototype

you wrote in STEP 1 as the function header. In the body, all you

need to do is return the quotient of the two input parameters (x 7 y)
HHHH A T T R T R R S
//Function Header

float divide function(float x, float y)

{

return (x / y); //Function Body

}

© 2008 Micro@gip Technology Incorporated. All Rights Reserved. 1224 Crg . - _— - Slideg229

ﬁ\ Lab 08

MASTERS -
CONFERENGE Conclusions

= Functions provide a way to modularize
code

m Functions make code easier to maintain
= Functions promote code reuse

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides230

2> >>>>ggg>>>>m

YOU + MICROCHIP ENGINEERING THE FUTURE TEEETHEH

Section 1.11
Multi-File Projects and
Storage Class Specifiers

ﬁ\ﬂ Storage Class Specifiers

pto e Scope and Lifetime of Variables

= Scope and lifetime of a variable depends
on its storage class:
= Automatic Variables
m Static Variables
m External Variables
= Register Variables

m Scope refers to where in a program a
variable may be accessed

m Lifetime refers to how long a variable will
exist or retain its value

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg232

ﬁ\ﬂ Storage Class Specifiers

TYenrennos Automatic Variables

m Local variables declared inside a function
m Created when function called
m Destroyed when exiting from function

m auto keyword usually not required — local
variables are automatically automatic*®

m Typically created on the stack

int foo(int x, int vy)

— Automatic Variables

{
F

*Except when the compiler provides an option to make parameters and locals static by defaulit.

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides233

ﬁ\ﬂ Storage Class Specifiers

e reninos auto Keyword with Variables

int foo(auto int x, auto int vy)

{

°
4

} .

m auto Is almost never used

= Many books claim it has no use at all

= Some compilers still use auto to explicitly

specify that a variable should be allocated
on the stack when a different method of
parameter passing is used by default

© 2008 Microship Technology Incor rporated . All Rights Reserved : 1224 Crg Slideg234

ﬁ\ﬂ Storage Class Specifiers

T UnFanaN ok Static Variables

= Given a permanent address in memory

m Exist for the entire life of the program
= Created when program starts
m Destroyed when program ends

m Global variables are always static (cannot
be made automatic using auto)

int X, 4 Global variable is always static

int main (void)

{

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slidew235

ﬁ\ﬂ Storage Class Specifiers

"YeureRinon static Keyword with Variables

m A variable declared as static inside a

function retains its value between function
calls (not destroyed when exiting function)

m Function parameters cannot be static
with some compilers (MPLAB® C30)

int foo(int x) a will remember its value

{ from the last time the
static int a = 0; <= function was called.

If given an initial value, it

is only initialized when

first created — not during

each function call

a += x;
return a;

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL b Slidew236

ﬁ\ - Storage Class Specifiers

MASTER)
CONPERENOE External Variables

m Variables that are defined outside the
scope where they are used

= Still need to be declared within the scope
where they are used

m extern keyword used to tell compiler that

a variable defined elsewhere will be used
within the current scope

External Variable

Declaration Syntax: extern type i1dentifier;

External Variable
Declaration Example:

extern int x;

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slideg237

ﬁ\ - Storage Class Specifiers

MASTER)
CONPERENOE External Variables

m A variable declared as extern within a

function is analogous to a function
prototype — the variable may be defined
outside the function after it is used

Example

int foo(int x)

{

extern int a;

return a;

}

int a;

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slidey238

ﬁ\ - Storage Class Specifiers

MASTER)
CONPERENOE External Variables

m A variable declared as extern outside of
any function is used to indicate that the
variable is defined in another source file —
memory only allocated when it's defined

SomeFilelnProject.c

extern int x; int x;

int main (void) int foo(void)

{

x = 5;

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slideg239

Mﬁ\n Storage Class Specifiers

e Register Variables

m Variables placed in a processor's
"hardware registers” for higher speed
access than with external RAM (mostly
used for microprocessor-based systems)

m Doesn't usually make sense in embedded
microcontroller system where RAM is
integrated into processor package

= May be done with PIC® MCU/dsPIC® DSC,
but it is architecture/compiler specific...

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slideg240

ﬁ\ﬂ Storage Class Specifiers

Rt Scope of Functions

m Scope of a function depends on its
storage class:
m Static Functions

m External Functions

m Scope of a function is either local to the
file where it is defined (static) or globally
available to any file in a project (external)

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 CPL G Slideg241

ﬁ\ - Storage Class Specifiers

MASTER .
CONFERENCE External Functions

= Functions by default have global scope
within a project

m extern keyword not required, but function
prototype is required in calling file (or .h)

SomeFilelnProject.c

int foo(void) ; int foo(void)

{

int main (void)

{ }

x = fool()

Slideg242

R\ Storage Class Specifiers
MASTERES : -

SEHPEEATRN Static Functions

m |[f a function is declared as static, it will

only be available within the file where it
was declared (makes it a local function)

SomeFilelnProject.c

static int foo(void)

{

}

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL . Slideg243

ﬁ\ﬂ Storage Class Specifiers

Rttt Library Files and Header Files

DECLARATIONS
INCLUDE
DECLARATIONS

LibFile.h
#include <LibFile.h>

Main.c extern int myVar;

int foo(void) ;

int x;

LibFile.c

int myVar;

int main (void)

{

int foo(void)

{
DEFINITIONS

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slidew244

x = foo() ;

USE
myVar = X;

e\ o

NVASTE
CONFERENCE

© 2008 I\/IicrocQLip Technology Incorporated. All Rights Reserved. 1224 CP* i

Slidey245

ﬂ Lab 09

RE
o Multi-File Projects

= Open the project’s workspace:
. On the lab PC
C:\RTC\101_ECP\Lab09\Lab09.mcw

ST @) Open MPLAB® IDE and select Open
5@ Edit View Project Debudg Workspace from the Flle menu.
Open the file listed above.

If you already have a project open in
MPLAB IDE, close it by selecting

Close Workspace from the File menu
before opening a new one.

Save Workspace

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slidew246

Lab 09

RE
Nonrininos Multi-File Projects

Solution: Step 1a and 1b (File1_09.h)

/R T R
STEP la: Add variable declarations to make the variables defined in

Filel 09.c available to any C source file that includes this

header file. (intVariablel, intVariable2, product)

TR A A R A R T A
//Reference to externally defined "intVariablel™

extern int intVariablel;

//Reference to externally defined "intVariable2"

extern int intVariable2;

//Reference to externally defined ''product"

extern int product;

S R R T T T T T R T R T T I TR R
STEP 1b: Add a function prototype to make multiply function() defined in

Filel 09.c available to any C source file that includes this header
file.

HHHHH T R R T R R T R R T T R T T R R T R R
//Function prototype for multiply function()

int multiply function(int x, int y);

© 2008 Micro@gip Technology Incorporated. All Rights Reserved. 1224 Crg . - _— - Slideg247

Lab 09
P Multi-File Projects
Solution: Step 2a and 2b (File2_09.h)

S A A R R T R
STEP 2a: Add variable declarations to make the variables defined in

File2 _09.c available to any C source file that includes this header
Tfile.(floatVariablel, floatVariable2, quotient, 1IntQuotient)
A A A R R T R
//Reference to externally defined "floatVariablel™

extern float floatVariablel;

//Reference to externally defined "floatVariable2"

extern float floatVariable2;

//Reference to externally defined 'quotient™

extern float quotient;
//Reference to externally defined "intQuotient"
extern int intQuotient;

[HHH R R R AR R R R R R R R R R R R R R R R R
STEP 2b: Add a function prototype to make divide_ function() defined in

File2_09.c available to any C source file that includes this header
Tile.

W T T T T T T T T T TR R T T T
//Function prototype for divide_function()

float divide function(float x, float y);

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& " g - Slides248

R\ Lab 09

MASTERS -
CONFERENGE Conclusions

= Multi-file projects take the concept of
functions further, by providing an
additional level of modularization

m Globally declared variables and all normal
functions are externally available if extern
declarations and function prototypes are
available

m Static functions are not available
externally

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL . Slideg249

ROIL10101010

>>>>>>z_ga_>>>>>m N

YOU + MICROCHIP ENGINEERING THE FUTURE TOGETHER

Section 1.12
Arrays

© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL

N

NVASTE
CONFERENCE

Arrays

Definition

Arrays are variables that can store many items of the same
type. The individual items known as elements, are stored

sequentially and are uniquely identified by the array index
(sometimes called a subscript).

= Arrays:
= May contain any number of elements
= Elements must be of the same type
= The index is zero based

m Array size (number of elements) must be
specified at declaration

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slides251

@ Arrays

A
Ndranince How to Create an Array

Arrays are declared much like ordinary variables:
Syntax

type arrayName[size];

m size refers to the number of elements
m size must be a constant integer

int a[l0]; // An array that can hold 10 integers

char s[25]; // An array that can hold 25 characters

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP_JT 9 Slidew252

@ Arrays

i
denraninos How to Initialize an Array at Declaration

Arrays may be initialized with a list when declared:

type arrayName[size] = {1tem,,.., 1tem_};

= The items must all match the type of the array

int a[5] = {10, 20, 30, 40, 50};

char b[5] = {'a', 'b', 'e¢', 'd', 'e'};

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP_JT 9 Slides253

@ Arrays

R
gt How to Use an Array

Arrays are accessed like variables, but with an index:
Syntax

arrayName [index]

® Index may be a variable or a constant
m The first element in the array has an index of 0
m C does not provide any bounds checking

int i, a[l1l0]; //An array that can hold 10 integers

for(i = 0; i < 10; i++) {

al[i] = 0; //Initialize all array elements to 0

}
al[4] = 42; //Set fifth element to 42

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP_JT 9 Slides254

ﬂ\ Arrays

al
Rttt Creating Multidimensional Arrays

Add additional dimensions to an array declaration:

type arrayName[size,]...[size_];

= Arrays may have any number of dimensions

® Three dimensions tend to be the largest used in
common practice

int a[l10]1[10]; //10x10 array for 100 integers

float b[10][10][10]; //10x1l0x1l0 array for 1000 floats

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slidéw255

@ Arrays

=Y
VenrRINoE Initializing Multidimensional Arrays at Declaration

Arrays may be initialized with lists within a list:

type arrayName[size,]..[size_] =
{{1tem,.., 1tem},

{item,:,item}};

char a[3][3] = {{'X', 'O', 'X'},
{vov, vov, vxv},
{'x‘, 'x‘['O'}};

int b[2] [2][2] = {{{0, 1},{2, 3}},{{4, 5},{6,

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP_JT

T} }}

Slid€g256

N

CONPERENOE

Arrays |

Visualizing 2-Dimensional Arrays
int a[3][3] = {{0, 1, 2},

{3, 4, 5},
Row, Column {6 , 7 , 8} } c
aly] [x] Column
— 1 X
_ a[0]1[0] = 0; Ll 3
2 al[0][1] = 1;
g2l = 1 0| 0 | 1
€ 4101721 = 2 -
a[0][2] = 2; 0,0 0,1 0,2
« a[l][0] = 3;
2 a[l][1] = 4; g1 3 | 4
o al[l]l[2] = 5; 1,0 1,1 1,2
: 2| 6 | 7
&3 al -4 = T 2,0 2,1 2,2
© 2008 Microlgip Technology Incorporated. All Rights Reserved. 1224 Cr} . Slidep257

L\ " Arrays

RE
NonraREnos Visualizing 3-Dimensional Arrays

int a[2][2][2] = {{{0, 1},{2, 3}},
{{4, 3},{6, 7}}};

Plane, Row, Column

alz] [y] [x]

a[0][0][O]
a[0][0][1]
a[0][1][0]
a[O0][1][1]
a[1][0][O]
a[l][0][1]
a[l][1][0]
a[l][1][1]

Plane 0

S ook WDMNBRE O

N D T Y N9 D Y b I D Y o

Plane 1

2008 Micrng Technology Incorporated. All Rights Reserved. SIiWSS

@ Arrays

]
Nionrananos Example of Array Processing

/**

* Print out 0 to 90 in increments of 10
**/
int main (void)
{

int 1 = 0;

int a[l0] = {0,1,2,3,4,5,6,7,8,9};

while (i < 10)

{
al[i] *= 10;
printf ("%d\n", a[i]);
i++;

}
while (1) ;

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CP,_t: 31 Slides259

ﬁ@ﬂ Strings
GonTRNaNos Character Arrays and Strings

Definition

Strings are arrays of char whose last element is a null
character '\0' with an ASCII value of 0. C has no native

string data type, so strings must always be treated as
character arrays.

m Strings:
= Are enclosed in double quotes "string"
= Are terminated by a null character '\0'

= Must be manipulated as arrays of characters
(treated element by element)

= May be initialized with a string literal

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slidew260

@ Strings

ASTERE
ConrRRNs Creating a String Character Array
Strings are created like any other array of char:

Syntax

char arrayName[length];

m length must be one larger than the length of the string
to accommodate the terminating null character "0’

m A char array with n elements holds strings with n-1 char

char strl[10]; //Holds 9 characters plus '\O'

char str2[6]; //Holds 5 characters plus '\O'

© 2008 I\/Iicrochlip Technology Incorporated. All Rights Reserved. 1224 CF’,JT 9 Slides261

@ Strings

ASTERE
ConrRRNs How to Initialize a String at Declaration
Character arrays may be initialized with string literals:

Syntax

char arrayName[] = "Microchip";

= Array size is not required
m Size automatically determined by length of string
= NULL character '\0' is automatically appended

char strl[] = "Microchip"; //10 chars "Microchip\0"

char str2[6] = "Hello"; //6 chars "Hello\O"

//Alternative string declaration - size required
char str3[4] = {'P', 'I', 'C', '"\0'};

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slidew262

M@ﬂﬂ Strings
P R How to Initialize a String in Code
In code, strings must be initialized element by element:

arrayName [
arrayName [

arrayName [

m Null character '\0' must be appended manually

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slides263

@ Strings

al
Rto b Comparing Strings

= Strings cannot be compared using logical
operators (==, '=, etc.)

= Must use standard C library string
manipulation functions

m strcmp () returns 0 if strings equal

char str|[] = "Hello";

if (!'strcmp(str, "Hello"))
printf ("The string is \"%s\".\n", str);

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL . Slideg264

@ Functions

VMASTERS
CONFERENQE Array Parameters

m Arrays are passed by reference rather than by
value for greater efficiency

m A pointer to the array, rather than the array itself
is passed to the function

This declaration...
void WritelLCD (char greetings|[]) {..}

...Is equivalent to this declaration.
void WritelLCD (char *greetings) {..}

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL b Slidéw265

e\ o

NVASTE
CONFERENCE

© 2008 I\/IicrocQLip Technology Incorporated. All Rights Reserved. 1224 CP* i

Slidey266

A\ Lab 10

21 AL Arrays

= Open the project’s workspace:
. On the lab PC
C:\RTC\101_ECP\Lab10\Lab10.mcw

ST @) Open MPLAB® IDE and select Open
5@ Edit View Project Debudg Workspace from the Flle menu.
Open the file listed above.

If you already have a project open in
MPLAB IDE, close it by selecting

Close Workspace from the File menu
before opening a new one.

Save Workspace

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slidew267

Lab 10

Solution: Step 1

SR T T R T T T T R R T I A T
STEP 1: Create two initialized arrays with 10 elements each named arrayl and
array2 (you may use the pre-defined constant ARRAY SIZE as part of
the array declaration).
The arrays should be initialized with the following values:
+ arrayl: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
+ array2: 9, 8, 7, 6, 5, 4, 3, 2, 1, O

Note: the elements are all of type iInt
T T T T T T T T T T T T T

// arrayl declaration & definition
int arrayl [ARRAY SIZE] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
// array2 declaration & definition
int array2[ARRAY SIZE] = {9, 8, 7, 6, 5, 4, 3, 2, 1, 0};

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& " g - Slides268

Lab 10

Arrays

CONPERENOE

Solution: Step 2

S A A R R T R

STEP 2: Pass the two arrays you declared above (arrayl & array2) to the
function add_function() (see its definition below). Store the
result of the function call in the array result[]. The i1dea here is
to add each corresponding element of arrayl and array2 and store the
result 1n result[]. In other words, add the first element of

arrayl[] to the first element of array2[] and store the result in
the fTirst element of result[]. Next add the second elements..
HHH R R R T R R TR R R R R R R
// result = sum of elements of arrayl & array2
result[i] = add function(arrayl[i], array2[i]);
i++;

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& " g - Slides269

R\ Lab 10

MASTERS -
CONFERENGE Conclusions

= Arrays may be used to store a group of
related variables of the same type under a
common nhame

m Individual elements are accessed by using
the array index in conjunction with the
array name

m Arrays may be used in many places that
an ordinary variable would be used

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg270

2}

o . -
X 9 = -
J],_, n:hl ,.u.u ng

! .. ._ ___1_ _
N IVIAS f~
_::. .?" J*;u:..a / 0

01 L L1 0101010

22> >>>>;gg>>>>m \

YOU + MICROCHIP ENGINEERING THE FUTURE TEEETHEH

Section 1.13
Data Pointers

© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL

ﬂ Pointers

VeRTe A Variable's Address versus A Variable's Value

® [n some situations, we will want to work with a
variable's address in memory, rather than the
value it contains...

16-bit Data Memory

Variable stored (RAM)
at Address Address
Variable name 0x0800
from. C code =) X N
int x; 0x0804 K
Address of
0x0806 -
Value of variable x
variable x 0x0808 = 0x0802

= 0x0123 0x080A

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slidew272

ﬂ\ Pointers

ASTERE
Loty What are pointers?

m A pointer is a variable or constant that holds the
address of another variable or function

16-bit Data Memory

Variable at (RAM)

Address Address

0x0800

Integer Variable: x 0x0802

0x0804

Pointer Variable: p 0x0806

0x0808

0x080A

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL b Slidew273

@ Pointers

ASTERE
What do they do?

m A pointer allows us to indirectly access a
variable (just like indirect addressing in assembly language)

16-bit Data Memory
(RAM)

Direct Access
via x

Address
0x0800

x = 0x0123; ==p x 0x0802

0x0804

*p = 0x0123; = p

0x0808 P points to x

0x080A

Indirect Access
via *p

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP:iT Slidew274

%
I

@ Pointers

ASTEERS
ConR RN Why would | want to do that?

= Pointers make it possible to write a very
short loop that performs the same task on
a range of memory locations / variables.

Example: Data Buffer

//Point to RAM buffer starting address
char *bufPtr = &buffer;

while ((DataAvailable) && (*bufPtr !'= '/0'))
{

//Read byte from UART and write it to RAM buffer

ReadUART (bufPtr) ;
//Point to next available byte in RAM buffer

bufPtr++;

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg275

@ Pointers

ASTEERS
ConR RN Why would | want to do that?

Example: Data Buffer

16-bit Data Memory
RAM buffer allocated over (RAM)

a range of addresses Address
(perhaps an array)

0x08BA

Pseudo-code: » 0x08BC
(1) Point arrow to first

address of buffer 0x08BE
0x08C0

(2) Write data from UART to
location pointed to by
arrow 0x08C2

(3) Move arrow to point to
next address in buffer 0x08C4

(4) Repeat until data from
UART is 0, or buffer is full
(arrow points to last 0x08CS8
address of buffer)

0x08C6

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg276

@ Pointers

ASTERE

ConR RN Where else are they used?

m Used in conjunction with dynamic memory
allocation (creating variables at runtime)

® Provide method to pass arguments by reference
to functions

= Provide method to pass more than one piece of
information into and out of a function

= A more efficient means of accessing arrays and
dealing with strings

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides277

@ Pointers

ARG How to Create a Pointer Variable

Syntax

type *ptrName;

= In the context of a declaration, the * merely indicates
that the variable is a pointer
m type is the type of data the pointer may point to

m Pointer usually described as “a pointer to type”

int *iPtr; // Create a pointer to int

float *fPtr; // Create a pointer to float

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT Slides278

M@ Pointers

GonFaninoe How to Create a Pointer Type with typedef

Syntax

typedef type *typeName;

m A pointer variable can now be declared as type
typeName which is a synonym for type

m The * is no longer needed since typeName explicitly
identifies the variable as a pointer to type

typedef int *intPtr; // Create pointer to int type

intPtr p; // Create pointer to int
t // Equivalent to: int *p;

@No * is usedJ

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP,JT

Slideg279

@ Pointers

MASTERS . .
CONFERENGE Initialization

m To set a pointer to point to another
variable, we use the & operator (address

of), and the pointer variable is used
without the dereference operator *:

m This assigns the address of the variable x
to the pointer p (p now points to x)

= Note: p must be declared to point to the
type of x (e.g. int x; int *p;)

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides280

@ Pointers

s
'E"omﬁm Usage

= When accessing the variable pointed to by

a pointer, we use the pointer with the
dereference operator *:

m This assigns to the variable y, the value of
what p is pointing to (x from the last slide)

m Using *p, Is the same as using the variable
it points to (e.g. x)

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides.281

@ Pointers

s
Rt Another Way To Look At The Syntax

//int and a pointer to int

//Assign p the address of x
//Same as x = 5;

m g¢x IS a constant pointer
m It represents the address of x
m The address of x will never change

= p Is a variable pointer to int

m [t can be assigned the address of any int
= It may be assigned a new address any time

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides282

@ Pointers

RS
Rt Another Way To Look At The Syntax

//1 int, 1 pointer to int

//Assign p the address of x
//Same as x = 5;

m *p represents the data pointed to by p
= *p may be used anywhere you would use x

m * is the dereference operator, also called the
indirection operator

= In the pointer declaration, the only significance of * is
to indicate that the variable is a pointer rather than an
ordinary variable

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides283

@ Pointers

R How Pointers Work

16-bit Data Memory

Variable at (RAM)
int x, y; Address Address

int *p; 0x08BA

0x08BC
0x08BE
0x08CO0

0x08C2
0x0100; 0x08C4

= O0xDEAD;
= OxBEEF;
= &X;

Y 0x08C6

0x0200;

0x08C8

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg.285

@ Pointers

R How Pointers Work

16-bit Data Memory

Variable at (RAM)
int x, y; Address Address

int *p; 0x08BA

= O0xDEAD;
— OxBEEF - Y 0x08BE
0x08CO

= &X;
0x08C2
0x0100; 0x08C4

&y 0x08C6

0x0200;
0x08C8

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slidew286

@ Pointers

R How Pointers Work

16-bit Data Memory

Variable at (RAM)
int x, y; Address Address

int *p; 0x08BA

0x08BC
0x08BE
0x08CO0

0x08C2
*p = 0x0100; 0x08C4

x = 0OxDE s
= O0xBEEF;
P = &Xx;

P = &y;
0x08C6
*p = 0x0200; X
} 0x08C8

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slidew287

@ Pointers

R How Pointers Work

16-bit Data Memory

Variable at (RAM)
Address Address

int *p; 0x08BA

0x08BC

x = OxDEAD; Lo

y = OxBEEF:
= 0x08C0

&X;

0x08C2
0x08C4
0x08C6
0x08C8

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides288

@ Pointers

R How Pointers Work

16-bit Data Memory

Variable at (RAM)
Address Address

0x08BA

0x08BC
0x08BE
0x08CO0
0x08C2
0x08C4
0x08C6
0x08C8

= OxBEEF;

= &X;

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides289

@ Pointers

R How Pointers Work

16-bit Data Memory

Variable at (RAM)
Address Address

0x08BA

0x08BC
0x08BE
0x08CO0
0x08C2
0x08C4
0x08C6
0x08C8

= OxBEEF;

= &X;

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides290

ﬂ\ Pointers

RE
gt How Pointers Work

16-bit Data Memory

Variable at (RAM)
int x, y; Address Address

int *p; 0x08BA

0x08BC
0x08BE
0x08CO0

0x08C2
*p = 0x0100; 0x08C4

= O0xDEAD;
= OxBEEF;
= &xX;

p = &y,
b = 0x0200; 0x08C6
) 0x08C8

© 2008 Microghip Technology Incorporated. All Rights Reserved. 1224 CPL . Slideg291

ﬁ\ Pointers and Arrays

i)
o A Quick Reminder...

= Array elements occupy consecutive memory
locations

16-bit Data Memory
(RAM)

int x[3] = {1,2,3}; Address
0x07FE

x[0] 0x0800

x[1] 0x0802
x[2] 0x0804
0x0806

m Pointers can provide an alternate method for
accessing array elements

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slides292

ﬁ\ﬂ Pointers and Arrays

donraninoe Initializing a Pointer to an Array

= The array name is the same thing as the
address of its first (0t") element

If we declare the following array and pointer variable:

int x[5] = {1,2,3,4,5};

int *p;

We can initialize the pointer to point to the array using any
one of these three methods:

= x; //Works only for arrays!

&X; //Works for arrays or variables
= &x[0]; //This one is the most obvious

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slides293

ﬁ\ﬂ Pointers and Arrays

denraninos A Preview of Pointer Arithmetic

= Incrementing a pointer will move it to the
next element of the array

16-bit Data Memory
(RAM)

Address

0x07FE

0x0800

0x0802

0x0804

0x0806

m More on this In just a bit...

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slides294

ﬁ\ﬂ Pointers and Arrays

denraninos A Preview of Pointer Arithmetic

= Incrementing a pointer will move it to the
next element of the array

16-bit Data Memory
(RAM)

Address

0x07FE
0x0800
0x0802

0x0804

0x0806

m More on this In just a bit...

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL b Slidew295

ﬁ\ﬂ Pointers and Arrays

denraninos A Preview of Pointer Arithmetic

= Incrementing a pointer will move it to the
next element of the array

16-bit Data Memory
int X[3] = {1,2,3}; Address
int *p;

0x07FE

0x0800
0x0802

m More on this In just a bit...

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL b Slidew296

ﬁ\ Pointer Arithmetic

MASTERE - -
CONFERENCE |ncrement|ng Pointers

= Incrementing or decrementing a pointer
will add or subtract a multiple of the
number of bytes of its type

= [f we have:

float x;

float *p = &x;
ptt;

We willgetp = &x + 4 since a float
variable occupies 4 bytes of memory

%\ Pointer Arithmetic

MASTER - .
CONFERENCE |ncrement|ng Pointers

float *ptr; 0X0050

0x0052

pPtr = &a; —p 0x0054

0x0056

Ptr++t; —mp 0X0058

0x005A

0x005C
0x005E

Incrementing ptr moves it 010060

0x0062

to the next sequential 010064

0x0066
float array element 0x0068
Ox006A
0x006C
0x006E
0x0070
0x0072
0x0074
0x0076

16-bit Data Memory Words

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 CPg Slides298

ﬁ\ Pointer Arithmetic

a
donraninoe Larger Jumps

= Adding or subtracting any other number
with the pointer will change it by a multiple
of the number of bytes of its type

= |[f we have

We willgetp = &x + 6 since an int
variable occupies 2 bytes of memory

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides299

%\ Pointer Arithmetic

donraninoe Larger Jumps

float *ptr; 0X0050

0X0052
pPtr = &a; —p 0x0054

0x0056
0x0058
0x005A
0x005C

Adding 6 to ptr moves it 6 0x005E

0x0060

float array elements s

ahead (24 bytes ahead) 0x0064

0x0066

0x0068
OX006A
Ptr 4= 6; —p 0X006C
OX006E
0X0070
0X0072
0X0074
0X0076

16-bit Data Memory Words

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 CPIL . Slides300

@ Pointers

TYehFaRinos Pointer Arithmetic

16-bit Data Memory
(RAM)
long x[3] = {1,2,3}; Address

long *p = &x; 0x07FE

0x0800

*p += 4;

OxDEADBEEF';

0x0806
0x0808

OxF1DOFO0O0D;

= 2;
0xBADFOOD1 ; LA
0x080C

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slides301

@ Pointers

AT Pointer Arithmetic

16-bit Data Memory
(RAM)

long x[3] = {1,2,3}; Address
long *p = é&x; 0x07FE

—_— > x[0] 0x0800

*p += 4;

OxDEADBEEF; x[1]

0x0806
0x0808
0x080A
0x080C

OxF1DOFO0OD;
=2;
OxBADFOQOOD1;

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP_JT 9 Slides302

@ Pointers

AT Pointer Arithmetic

16-bit Data Memory
(RAM)
long x[3] = {1,2,3}; Address

long *p = é&x; 0x07FE

0x0800

*p += 4;
" 0x0802

OxDEADBEEF ; 0x0804

OxF1DOFO0O0D;

= 2;
0xBADFOOD1 ; LA
0x080C

Ux0808

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slides303

@ Pointers

AT Pointer Arithmetic

16-bit Data Memory
(RAM)
long x[3] = {1,2,3}; Address

long *p = é&x; 0x07FE

x[0] 0x0800

*p += 4;

= OxDEADBEEF: x[1] 0x0804

OxF1DOFO0O0D;

= 2 s
0xBADFOOD1 ; 0x080A
0x080C

Ux0808

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slides304

@ Pointers

AT Pointer Arithmetic

16-bit Data Memory
(RAM)

long x[3] = {1,2,3}; Address
long *p = é&x; 0x07FE

0x0800
0x0802

*p += 4;

OxDEADBEEF ; 0x0804
0x0806

0x0808

OxF1DOFO0O0D;
=2;
OxBADFOQOOD1;

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slides305

@ Pointers

AT Pointer Arithmetic

16-bit Data Memory
(RAM)

long x[3] = {1,2,3}; Address
long *p = é&x; 0x07FE

0x0800

*p += 4;
o 0x0802

0x0804

0x0806

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slides306

@ Pointers

NVASTE
CONFERENCE

long x[3] = {1,2,3};
long *p = &x;

e s x[0]
P = 4,

OxDEADBEEF; x[1]

OxF1DOFO0OD;

=2;
Ox;Z;;33;I7“__*>
P

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP,IT

Pointer Arithmetic

16-bit Data Memory
(RAM)

Address
0x07FE

0x0800

0x0806
0x0808
0x080A
0x080C

Slid€g307

@ Pointers

TYehFaRinos Pointer Arithmetic

16-bit Data Memory
(RAM)
long x[3] = {1,2,3}; Address

long *p = é&x; 0x07FE

0x0800

*p += 4;

OxDEADBEEF';

0x0806
0x0808

OxF1DOFO0O0D;

= 2;
0xBADFOODL1 ; LA
0x080C

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP_JT 9 Slides308

%\ Pointers

8
Rt Post-Increment/Decrement Syntax Rule

m Care must be taken with respect to operator
precedence when doing pointer arithmetic:

Syntax Operation Description by Example

z * (pt++) ;
Post-Increment is equivalent to:
Pointer z *D;

P p + 1;

Z (*p) ++;

is equivalent to:

z = *p;

*p = *p + 1;

Post-Increment
data pointed to
by Pointer

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 CP_L \ Slider309

ﬂ\ Pointers

al
"eeNFERINGE Post-Increment / Decrement Syntax

16-bit Data Memory

x[3] = {1,2,3}; Address

Y- 0x07FE
*p = &x;

5 + *(pt++) ;

0x0804
> + (*p)++; 0x0806
0x0808
0x080A
0x080C

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL b Slides310

@ Pointers

al
"eeNFERINGE Post-Increment / Decrement Syntax

16-bit Data Memory

int x[3] = {1,2,3}; Address

int y; 0x07FE
int *p = &x;

y =35 + *(ptt+):
0x0804

0x0806

0x0808

0x080A
0x080C

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slides311

ﬂ\ Pointers

"eeNFERINGE Post-Increment / Decrement Syntax

16-bit Data Memory

x[3] = {1,2,3}; Address

Y- 0x07FE
*p = &x;

0x0800

0x0806
0x0808
0x080A
0x080C

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL b Slides312

@ Pointers

al
"eeNFERINGE Post-Increment / Decrement Syntax

16-bit Data Memory

x[3] = {1,2,3}; Address

Y- 0x07FE
*p = &x;

0x0800

5 + * (I?"' 0x0802

5 + (*p)++; 0x0806

0x0808

0x080A
Remember:
* (p++) is the same as *p++ 0x080C

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slides313

ﬂ\ Pointers

al
"eeNFERINGE Post-Increment / Decrement Syntax

16-bit Data Memory

x[3] = {1,2,3}; Address

Y- 0x07FE
*p = &x;

0x0800

5 + *(PV 0x0802

5 + (*p)++; 0x0806

0x0808

0x080A
Remember: 0x080C
* (p++) is the same as *p++ X

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL b Slides314

%\ Pointers

8
Rt Pre-Increment/Decrement Syntax Rule

m Care must be taken with respect to operator
precedence when doing pointer arithmetic:

Syntax Operation Description by Example

z * (++p) ;
Pre-Increment is equivalent to:
Pointer p=p+1;
A *p;
z ++(*p) ;

Pre-Increment : :
is equivalent to:

data pointed to
by Pointer

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 CP_L \ Slidés315

ﬂ\ Pointers

al
"eeNFERINGE Pre-Increment / Decrement Syntax

16-bit Data Memory

x[3] = {1,2,3}; Address

Y- 0x07FE
*p = &x;

5 + *(++p);

0x0804
> + ++(*p); 0x0806
0x0808
0x080A
0x080C

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL b Slides316

ﬂ\ Pointers

"eeNFERINGE Pre-Increment / Decrement Syntax

16-bit Data Memory

x[3] = {1,2,3}; Address

Y- 0x07FE
*p = &x;

0x0800

0x0806
0x0808
0x080A
0x080C

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL b Slides317

ﬂ\ Pointers

al
"eeNFERINGE Pre-Increment / Decrement Syntax

16-bit Data Memory

x[3] = {1,2,3}; Address

Y- 0x07FE
*p = &x;

0x0800

0x0806
0x0808
0x080A
0x080C

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL b Slides318

ﬂ\ Pointers

al
"eeNFERINGE Pre-Increment / Decrement Syntax

16-bit Data Memory

x[3] = {1,2,3}; Address

Y- 0x07FE
*p = &x;

0x0800

5 + *(+V 0x0802

5 + ++(*p); 0x0806

0x0808

0x080A
Remember: 0x080C
* (++p) is the same as *++p X

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL b Slides319

@ Pointers

al
"eeNFERINGE Pre-Increment / Decrement Syntax

16-bit Data Memory

x[3] = {1,2,3}; Address

Y- 0x07FE
*p = &x;

0x0800

5 4 *(.|..|.p)r— 0x0802

5 + ++(*p): 0x0806

0x0808

0x080A
Remember:
* (++p) is the same as *+4p 0x080C

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slides320

@ Pointers

¥
Rto b Pre- and Post- Increment/Decrement Summary

m The parentheses determine what gets
incremented/decremented:

Modify the pointer itself

* (++p) or *++p and * (p++) or *p++

Modify the value pointed to by the pointer

++ (*p) and (*p) ++

@ Pointers

=1
NN FaRince Initialization Tip

m If a pointer isn't initialized to a specific
address when it is created, it is a good
idea to initialize it as NUL (pointing to
nowhere)

= This will prevent it from unintentionally

corrupting a memory location if it is
accidentally used before it is initialized

int *p = NUL;

NULL is the character '\0' but NUL is the value of a
pointer that points to nowhere

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg322

45\

NVASTE
CONFERENCE

Pointers and Pointer
Arithmetic

On the CD
...\101_ECP\Lab11\Lab11.mcw

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slides323

@ Lab 11

RE
donraninoe Pointers and Pointer Arithmetic

= Open the project’s workspace:
. On the lab PC
C:\RTC\101_ECP\Lab11\Lab11.mcw

ST @) Open MPLAB® IDE and select Open
5@ Edit View Project Debudg Workspace from the Flle menu.
Open the file listed above.

If you already have a project open in
MPLAB IDE, close it by selecting

Close Workspace from the File menu
before opening a new one.

Save Workspace

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slides324

Lab 11 "

MasTERE
SSHAERRRCE Pointers and Pointer Arithmetic
Solution: Steps 1, 2 and 3

[B R R R R R R R R R R R R
STEP 1: Initialize the pointer p with the address of the variable x
W T T T T T T T R R T I AT
//Point to address of X
P = &x;

/U T T T T T T
STEP 2: Complete the following printf() functions by adding In the

appropriate arguments as described iIn the control string.

HHHHH R HHBHHH R R R R R R R R R R R R R R R R R R R/

printf ("The variable x is located at address 0x%X\n", &x);
printf ("The value of x is %d\n", x);

printf ("The pointer p is located at address 0x%X\n", &p);
printf ("The value of p is 0x%X\n", p);

printf ("The value pointed to by *p = %d\n", *p);

SRR T T T T T T T

STEP 3: Write the int value 10 to the location p is currently pointing to.

HHHH A A R R A R R R R R R R R/
*p = 10;

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& ﬁ Slides325

Lab 11 "

2
pto e Pointers and Pointer Arithmetic

Solution: Steps 4 and 5

S A A R R T R

STEP 4: Increment the value that p points to.

HHHHH R R T T R R T R R R R R
//1Increment array element"s value

(*p) ++;

printf("y[%d] = %d\n", 1, *p);
/R R T R T R R T R T
STEP 5: Increment the pointer p so that i1t points to the next item.
HHHHH R HHHHHH R R R R R R R R R R R A R R R R/
//Increment pointer to next array element
p++;

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& ﬁ Slides326

ﬁ\ Lab 11

MASTERS -
CONFERENGE Conclusions

m Pointers are variables that hold the
address of other variables

= Pointers make it possible for the program
to change which variable is acted on by a
particular line of code

= Incrementing and decrementing pointers
will modify the value in multiples of the
size of the type they point to

© 2008 Microghip Technology Incorporated. All Rights Reserved. 1224 CPL Slideg327

@ﬂ Pointers and Functions

donraninoe Passing Pointers to Functions

= Normally, functions operate on copies of
the data passed to them (pass by value)

int x =2, yv = 0;

Value of variable passed to function

_ _ Is copied into local variable n
int square(int n)

{
}

return (n * n);

int main (void)
{ After Function Call: y=4

= square (x) ; x=2
} Y i x was not changed by function

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL b Slides328

@ﬂ Pointers and Functions

donraninoe Passing Pointers to Functions

= Pointers allow a function to operate on the
original variable (pass by reference)

int x =2 , yv=0;

Address of variable passed to
function and stored in local

void square(int *n) ginter variable n

{
}

*n x) = *n;

int main (void)

{ After Function Call: x=4
square (&x) ; x was changed by function
}

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL b Slides329

ﬂ\ Pointers and Functions

donraninoe Passing Pointers to Functions

= A function with a pointer parameter:

Example

int foo(int *q)

m Must be called in one of two ways:
(assume: int x, *p = &x;)

Pass an address to the function so the address
may be assigned to the pointer parameter:

q = &x

Pass a pointer to the function so the address
may be assigned to the pointer parameter:

q9=P

© 2008 Microghip Technology Incorporated. All Rights Reserve d. 1224 Cry Slideg330

1\ Pointers and Functions
MASTERS .

e Passing Parameters By Reference
Example — Part 1

We know where
Swap function definition: you live!

void swap(int *nl, int *n2)

{

int temp;

Addresses of parameters
copied to local pointer
variables: Function can

now modify the original

temp = *nl;
*nl = *n2;

*n2 = temp; variables via pointers.

© 2008 Microghip Technology Incorporated. All Rights Reserved. 1224 Cry Slideg331

1\ Pointers and Functions
MASTERS .

e Passing Parameters By Reference
Example — Part 2

Main function definition:

int main (void) Swap function prototype:
{ void swap (int *nl, int *n2)

int x = 5, y = 10;
int *p = &y; Fell function where

x and y live...
nl = &x
2

NGl
while (1) ’ After running program:

x=10
y=9

swap (&x, p);

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg332

M&ﬂ Pointers and Strings

m So far, we have worked with strings
strictly as arrays of char

m Strings may be created and used with
pointers much more elegantly

16-bit Data Memory (RAM)

String declaration with a pointer: Address
char *str = "PIC"; str m 0x08C2

Implementation

varies depending on » 49|50 0x91CO0
C

00/43 0x91C2

compiler and
architecture used.

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slides333

Mgﬂ Pointers and Strings

= When initialized, a pointer to a string
points to the first character:

char *str = '"Microchip";
str

M

m Increment or add an offset to the pointer to
access subsequent characters

© 2008 Micro@hip Technology Incorporated . All Rights Reserved : 1224 Crg Slideg334

M&ﬂ Pointers and Strings

= Pointers may also be used to access
characters via an offset:

char *str = '"Microchip";
*str == 'M'

\ 4

M 1 c o h

)
*(str + 4) ==

ﬁ\ Pointers and Strings

VMASTERS - R .- - .
conrrmENe® Pointer versus Array: Initialization at Declaration

m Initializing a character string when it is
declared is essentially the same for both a
pointer and an array:

Example: Pointer Variable

Example: Array Variable

char *str = "PIC"; char str[] = "PIC";

or

char str[4] = "PIC";

The NULL character '\0' is automatically appended to
strings in both cases (array must be large enough).

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg336

ﬁ\ﬂ Pointers and Strings

Lot Pointer versus Array: Assignment in Code

= An entire string may be assigned to a pointer
m A character array must be assighed character by

character

Example: Pointer Variable

char *str;

str = "PIC";

str|
str|
str|
str|

Example: Array Variable

char str[4];

U~
U L
'Q!
|\Ol .

Must explicitly add NULL character '\0' to array.

© 2008 Microghip Technology Incorporated. All Rights Reserved. 1224 Chg

Slideg337

ﬁ\ﬂ Pointers and Strings

Rto b Comparing Strings

= If you want to test a string for equivalence,
the natural thing to do is:
if (str == "Microchip")

m This is not correct, though it might appear
to work sometimes

m This compares the address in str to the
address of the string literal "Microchip"

m The correct way is to use the strcmp ()

function in the standard library which
compares strings character by character

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides338

.@_I Pointers and Strings

TeNrEntNoE Comparing Strings

= strcmp() prototype:

Function Prototype

int strcmp (const char *sl, const char *s2);

m strcmp() return values:
m <0 if s1is less than s2
m0if s1is equal to s2
= >0 if s1 is greater than s2

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CP:iT

ﬁ\ﬂ Pointers and Strings

Rto b Comparing Strings

#include <string.h>
char *str = "Microchip";

int main (void)

{

if (0 == strcmp(str, "Microchip"))
printf ("They match!\n") ;

while (1) ;

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg340

ﬁ\ Arrays of Pointers

MASTERS -
CONFERENOE Declaration

= An array of pointers is an ordinary array
variable whose elements happen to all be
pointers.

char *p[4];

= This creates an array of 4 pointers to char
m The array p[] itself is like any other array

m The elements of p[], suchas p[1], are
pointers to char

© 2008 Microip Technology Incorporated . All Rights Reserved . 1224 CP Slides341

ﬁ\ Arrays of Pointers

MASTERE .
SENEENNE Array Elements are Pointers Themselves

16-bit Data Memory
(RAM)

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slides342

@ Arrays of Pointers

MASTERS . .
CONFERENGE Initialization

= A pointer array element may be initialized
just like its ordinary variable counterpart:

p[0] = &x;

= Or, when working with strings:

p[0] = "My string";

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slides343

ﬁ\ Arrays of Pointers

MASTERS -
CONFERENOE Dereferencing

= To use the value pointed to by a pointer
array element, just dereference it like you
would an ordinary variable:

m Using *p[0] Is the same as using the
object it points to, such as x or the string
literal "My String" from the previous

slide

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides344

ﬁ\ Arrays of Pointers

o
Nionrananos Accessing Strings

int 1 = 0;
char *str|] {"Zero", "One", "Two",
"Three", "Four", H\OH};

int main (void)

{

while (*str[i] !'= '\0"')
printf ("%$s\n", str[i++]);

while (1) ;

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slides345

e\ o

CONPERENOE

Pointers, Arrays, and
Functions

© 2008 I\/IicrocQLip Technology Incorporated. All Rights Reserved. 1224 CP* i

Slidey346

@ Lab 12

MASTERE . -
OONFERENOE Pointers, Arrays, and Functions

= Open the project’s workspace:
. On the lab PC
C:\RTC\101_ECP\Lab12\Lab12.mcw

ST @) Open MPLAB® IDE and select Open
5@ Edit View Project Debudg Workspace from the Flle menu.
Open the file listed above.

If you already have a project open in
MPLAB IDE, close it by selecting

Close Workspace from the File menu
before opening a new one.

Save Workspace

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slides347

Lab 12"

]
denraninos Pointers, Arrays, and Functions

Solution: Steps 1 and 2

SR T R T T T R R T I A T
STEP1: Pass the variable x to the function twosComplement such that the
value of x i1tself may be changed by the function. Note: The function
expects a pointer (address) as i1ts parameter.
HHH R T R T R R T R R R R
//Perform twos complement on X

twosComplement (&x) ;

[/ H R R R R
STEP 2: Pass the array "a" to the function reversel(). Use the constant
ARRAY_SIZE for the second parameter.
See definition of function reversel() below.
HHH R R R R R R R R R R R R R R R R)
//Reverse order of elements by passing array

reversel (a, ARRAY SIZE);

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& " g - Slides348

Lab 12"

]
denraninos Pointers, Arrays, and Functions

Solution: Steps 3 and 4

[B R R R R R R R R R R R R
STEP 3: Pass a pointer to array "a" to the function reverse2(). Use the

constant ARRAY_SIZE for the second parameter.

See definition of function reverse2() below.

Hint: You do not need to define a new pointer variable to do this.
HHH R R R R R R R R R R R R R R)
//Reverse order of elements by passing pointer

reverse2 (a, ARRAY SIZE);

[HHAH R A R A R R A R R A R R R R R R

STEP 4: Complete the function header by defining a parameter called “number®
that points to an integer (i.e. accepts the address of an integer

variable).

HHHH R T T R T R R A R T R R R R
//void twosComplement(/*### Your Code Here ###*/)

void twosComplement (int *number)

{

*number = ~(C*number); //Bitwise complement value
*number += 1; //Add 1 to result

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& " g - Slides349

ﬁ\ Lab 12

MASTERS -
CONFERENGE Conclusions

= Pointers make it possible to pass a
variable by reference to a function (allows
function to modify original variable — not a
copy of its contents)

m Arrays are frequently treated like pointers

= An array name alone represents the
address of the first element of the array

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg350

2}

o . -
X 9 = -
J],_, n:hl ,.u.u ng

! .. ._ ___1_ _
N IVIAS f~
_::. .?" J*;u:..a / 0

01 L L1 0101010

22> >>>>;gg>>>>m \

YOU + MICROCHIP ENGINEERING THE FUTURE TEEETHEH

Section 1.14
Function Pointers

© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL

Mg;ﬂ Function Pointers

CONFERENCE

= Pointers may also be used to point to
functions

= Provides a more flexible way to call a
function, by providing a choice of which
function to call

m Makes it possible to pass functions to
other functions

= Not extremely common, but very useful in
the right situations

© 2008 Microghip Technology Incorporated. All Rights Reserved. 1224 CPL Slideg352

ﬁ\ Function Pointers

MASTERS -
CONFERENGE Declaration

= A function pointer is declared much like a
function prototype:

int (*fp) (int x);

m Here, we have declared a function pointer
with the name fp

= The function it points to must take one int
parameter

m The function it points to must return an int

© 2008 Microéhip Technology Incorporated . All Rights Reserved . 1224 CPL Slides353

@ Function Pointers

MASTERS . .
CONFERENGE Initialization

= A function pointer is initialized by setting
the pointer name equal to the function

name
If we declare the following:

int (*fp) (int x); //Function pointer

int foo(int x); //Function prototype

We can initialize the function pointer like this:

fp = foo; //fp now points to foo

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP_JT 9 Slides354

ﬁ\ Function Pointers

s
Lot Calling a Function via a Function Pointer

= The function pointed to by fp from the
previous slide may be called like this:

m This is the same as calling the function
directly:

y = foo(x);

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slides355

ﬁ\ Function Pointers

"eeNFERINGE Passing a Function to a Function

Example 1: Understanding the Mechanism

int x;
int foo(int a, int b); //Function prototype
int bar(int a, int b); //Function prototype

//Function definition with function pointer parameter
int foobar (int a, int b, int (*fp) (int, int))
{

return fp(a, b); //Call function passed by pointer
}

void main (void)
{
= foobar (5, 12, &foo); //Pass address of foo

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slides356

ﬁ\ Function Pointers

al
"eeNFERINGE Passing a Function to a Function

Example 2: Evaluate a Definite Integral (approximation)

float integral(float a, float 9, g;oat (*f)(floa@))
{ bou ndsﬁr?)/f/iinteg ral function t(;B/e/evaI uated

float sum = 0.0;)
float x; y = J. f(x) dx
a

int n;

//Evaluate integral{a,b} f(x) dx

for (n = 0; n <= 100; n++)
{
x = ((n/ 100.0) * (b - a)) + a;
sum += (£f(x) * (b - a)) / 101.0;
}

return sum;

Adapted from example at: http://en.wikipedia.org/wiki/Function_pointer

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides357

45\

NVASTE
CONFERENCE

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slides358

A\ Lab 13

MASTERS - ;
CONFERENCE Function Pointers

= Open the project’s workspace:
. On the lab PC
C:\RTC\101_ECP\Lab13\Lab13.mcw

ST @) Open MPLAB® IDE and select Open
5@ Edit View Project Debudg Workspace from the Flle menu.
Open the file listed above.

If you already have a project open in
MPLAB IDE, close it by selecting

Close Workspace from the File menu
before opening a new one.

Save Workspace

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slides359

B Lab 13

MASTERS : p
CONFERENCE Function Pointers

= Compile and run the code:

© Compile (Build All) € Run @ Halt

s Test - MPLAB IDE v7.51 - [MPLAB IDE Editor]
] File Edit View Project Debugger Programmer Tools Configure Window Help

O = S odh R 7 Release v o' & o =5 0x53938 ‘ L [T Eli |

€) Click on the Build Al button.

If no errors are reported,
click on the Run button.

0 Click on the Halt button.

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& 5& = Slides360

S\ Lab 13

VMASTERS - -
CONFERENCE FunCthn POI“terS

m Results

Build | “erzion Control | Find in Filez | MPLAE Sik | 518 Uart

w1 =integral of x dx over0to 1 = 0500000
w2 = integral of x"2 dx owver 0to 1 = 0.335000
w3 = integral of 3 dw ower Dto 1 = 0252500

Threg separate functions are integrated over the interval 0 to 1:
y, = Jx dx =% x?+ C [0,1] = 0.500000

y,=lx2dx =%x*+C[01 = 0.335000

y,=x3dx =% x4+C[0,1] = 0.252500

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slides361

B Lab 13

MASTERS - p
CONPERENOE Function Pointers

Function to Evaluate: xsquared()

FUNCTION: xsquared()

DESCRIPTION: Implements function y = x/2
PARAMETERS: float X

RETURNS: float (X * x)

REQUIREMENTS:

float xsquared(float x)
{

return (x * x);

Int x*2 dx over the interval 0 to 1

© 2008 I\/Iicroch._ip Technology Incorporated. All Rights Reserved. 1224 CP& 5& = Slides362

Lab 13

MASTERS : p
CONFERENCE Function Pointers

FUNCTION: integral ()

DESCRIPTION: Evaluates the integral of the function passed to i1t over the
interval a to b.

PARAMETERS: interval end points a & b and function to integrate

RETURNS: integral of function f over interval a to b

REQUIREMENTS: none

SOURCE: Adapted from example at:

http://en.wikipedia.org/wiki/Function_pointer

float integral (float a, float b, float (*f) (float))
{
float sum = 0.0;
float x;
int n;
//Evaluate integral{a,b} f(x) dx
for (n = 0; n <= 100; n++)
{
x = ((n/ 100.0) * (b-a)) + a;
sum += (£(x) * (b-a)) / 101.0;
}

return sum;

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& Slides363

R\ Lab 13

MASTERS -
CONFERENGE Conclusions

= Function pointers, while not frequently
used, can provide a very convenient
mechanism for passing a function to
another function

= Many other possible applications exist
= Jump tables
= Accommodating multiple calling conventions
m Callback functions (used in Windows ™)

m Call different versions of a function under
different circumstances

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg364

[‘\x S

— .y
—

J],_, n:hl ,.u.u ng

_1:.9.?‘ ' =J*;JJL£ | 0
01 T 0101010

22> >>>>;gg>>>>m \

YOU + MICROCHIP ENGINEERING THE FUTURE TEEETHEH

Section 1.15
Structures

© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL

N

was s Structures
Definition

Structures are collections of variables grouped together
under a common name. The variables within a structure are

referred to as the structure’s members, and may be
accessed individually as needed.

m Structures:

= May contain any number of members
= Members may be of any data type

= Allow group of related variables to be treated
as a single unit, even if different types

m Ease the organization of complicated data

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP:iT :3*; Slides366

@ Structures

al
Rt How to Create a Structure Definition

struct structName

{
type, membe rNamel ; Members are declared just
like ordinary variables

type, memberName,_:;

}

Example

// Structure to handle complex numbers
struct complex

{
float re; // Real part

float im; // Imaginary part
}

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP,JT

Slid€g367

@ Structures

al
ConRRINGs How to Declare a Structure Variable (Method 1)

struct structName

{
type, memberName, ;

type, memberName,;
} varName,, ... ,varName,;

Example

// Structure to handle complex numbers
struct complex
{
float re;
float im;
} x, vy // Declare x and y of type complex

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP_JT 9 Slides368

Mﬁ\ Structures

St L How to Declare a Structure Variable (Method 2)

If structName has already been defined:

struct structName varName,,..,varName,;

struct complex

{
float re;
float im;

}

struct complex x, y; // Declare x and y of type complex

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT Slides369

M@ﬁ Structures
CONFERENOS How to Use a Structure Variable

Syntax
structVariableName.memberName

Example

struct complex

{

float re;
float im;

} x, vy // Declare x and y of type complex

int main(void)

{

x.re = 1.25; // Initialize real part of x
Xx.im = 2.50; // Initialize imaginary part of x
y = X; // Set struct y equal to struct x

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP,JT Slides370

@ Structures

NRAINer How to Create a Structure Type with typedef

typedef struct structlag,,tional

{
type, memberName, ;

type, memberName,_:;
} typeName;

// Structure type to handle complex numbers
typedef struct
{
float re; // Real part
float im; // Imaginary part
} complex;

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slides371

ﬁ\ Structures

m
ConRRINGs How to Declare a Structure Type Variable

If typeName has already been defined:

typeName varName,,..,varName,;

The keyword struct is no longer required!

Example

typedef struct
{
float re;
float im;
} complex;

complex x, y; // Declare x and y of type complex

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPg

Slideg372

ﬁ\ Structures

m
WENRTIeT How to Initialize a Structure Variable at Declaration

If typeName or structName has already been defined:

typeName varName = {const,,..,const_};
- Or -
struct structName varName = {const,,..,const_};

Example

typedef struct
{
float re;
float im;
} complex;

complex x = {1.25, 2.50}; // x.re = 1.25, x.im

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL b Slides373

ﬁ\ Structures

al
pto e Nesting Structures

typedef struct
{
float x;
float y:
} point;

typedef struct
{

point a;
point b;

} line;

int main (void)

{

line m; (Xa Vo) = (1.2, 7.6)
m.a.Xx

o N

0 Ul ~.

N

m.a.y
m.b.x
m.b.y

| | I I |
W
~J 00 - .

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides374

ﬁ\ Structures

2
pto e Arrays and Pointers with Strings

m Strings:
= May be assigned directly to char array
member only at declaration

= May be assigned directly to a pointer to char
member at any time

Example: Structure

Example: Initializing Members

struct strings

{

char a[4];
char *b;
} str;

int main (void)
{
str.a[0]
str.a[l]
str.a[2]
str.a[3]

\BI .
14
\al o
14

str.b = "

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg375

ﬁ\ Structures

denraninos How to Declare a Pointer to a Structure

If typeName or structName has already been defined:

typeName *ptrName;
- Or -
struct structName *ptrName;

Example 1 Example 2

typedef struct struct complex
{ {
float re; float re;
float im; float im;
} complex; }

complex *p; struct complex *p;

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slides376

Mﬁ\ Structures

conrErENet . How to Use a Pointer to Access Structure Members
If ptrName has already been defined:

ptrName->memberName

Pointer must first be initialized to point to the address of the
structure itself: ptrName = &structVariable;

Example: Definitions Example: Usage

typedef struct int main (void)
{ {

float re; p = &x;

float im; //Set
} complex; //complex type p->re

//Set

complex x; //complex var p->im
complex *p; //ptr to complex

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT Slides377

Mﬁ\ Structures

VoNFRRENOE Creating Arrays of Structures

If typeName or structName has already been defined:

typeName arrName[n] ;
- Or -
struct structName arrName[n];

Example

typedef struct
{
float re;
float im;
} complex;

complex a[3];

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT Slides378

@ Structures

m
e Initializing Arrays of Structures at Declaration

If typeName or structName has already been defined:

typeName arrName[n] = {{list;},..,{list_}};
- Or -
struct structName arrName[n] = {{list },..,{list_}};

Example

typedef struct
{
float re;
float im;
} complex;

é;ﬁplex a[3] = {{1.2, 2.5}, {3.9, 6.5}, {7.1, 8.4}};

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP_JT 9 Slides379

@ Structures

Using Arrays of Structures

If arrName has already been defined:
Syntax

arrName[n] .memberName

ASTE
CONFERENCE

Example: Definitions Example: Usage

typedef struct int main (void)
{ {
float re;
float im;
} complex;

al[0] .re =
al[0].im =

complex a[3];

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CF’,-JT 9 Slides380

ﬁ\ Structures

Rt How to Pass Structures to Functions

typedef struct
{

float re;
float im;
} complex;

void display (complex x)

{

printf (M (%f + j%$f)\n”, x.re, x.im);

}

int main (void)
{
complex a
complex b

display(a) ;
display (b) ;
}

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slideg381

e\ o

NVASTE
CONFERENCE

© 2008 I\/IicrocQLip Technology Incorporated. All Rights Reserved. 1224 CP* i

Slidey382

@ Lab 14

VARG Structures

= Open the project’s workspace:
. On the lab PC
C:\RTC\101_ECP\Lab14\Lab14.mcw

ST @) Open MPLAB® IDE and select Open
5@ Edit View Project Debudg Workspace from the Flle menu.
Open the file listed above.

If you already have a project open in
MPLAB IDE, close it by selecting

Close Workspace from the File menu
before opening a new one.

Save Workspace

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slides383

Lab 14'

VAR Structures

Solution: Steps 1 and 2

/R R R R T R R T R T R R R R
STEP 1: Calculate the difference between maximum and minimum power 1In
circuit 1 using the individual power structures (i.e. variables
PMax1l & PMinl). Algebraic Notation:
Pdiff = (Vmax * Imax) - (Vmin * Imin)
HHHHH R R T R R T R R R R R
powerDiffl (PMaxl.v * PMaxl.i) - (PMinl.v * PMinl.i);
powerDiff2 (PMax2.v * PMax2.1) - (PMIn2.v * PMIn2.1);
powerDiff3 (PMax3.v * PMax3.1) - (PMIn3.v * PMIn3.1);

/R R R T R T T R R T R R

STEP 2: Calculate the difference between maximum and minimum power in

circuit 1 using the structure of structures (i1.e. variable PRangel).

Algebraic Notation: Pdiff = (Vmax * Imax) - (Vmin * Imin)

HHH R R R R R R R
powerDiffl = (PRangel.max.v * PRangel.max.i) - (PRangel.min.v * PRangel.min.i);
powerDiff2 = (PRange2.max.v * PRange2.max.i) - (PRange2.min.v * PRange2.min.i);
powerDiff3 = (PRange3.max.v * PRange3.max.i) - (PRange3.min.v * PRange3.min.i);

© 2008 I\/Iicroct}_ip Technology Incorporated. All Rights Reserved. 1224 CP& 5& = Slides384

ﬁ\ Lab 14

MASTERS -
CONFERENGE Conclusions

m Structures make it possible to associate
related variables of possibly differing
types under the same name

m Structure members (using the dot
notation) may be used anywhere an
ordinary variable would be used

= Pointers to structures make it possible to
copy one entire structure to another very
easily

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL . Slideg385

e\ o

NVASTE
CONFERENCE

© 2008 I\/IicrocQLip Technology Incorporated. All Rights Reserved. 1224 CP* i

Slidey386

@ Lab 15

R
gt Arrays of Structures

= Open the project’s workspace:

. On the lab PC
C:\RTC\101_ECP\Labs\Lab15\Lab15.mcw

ST @) Open MPLAB® IDE and select Open
5@ Edit View Project Debudg Workspace from the Flle menu.
Open the file listed above.

If you already have a project open in
MPLAB IDE, close it by selecting

Close Workspace from the File menu
before opening a new one.

Save Workspace

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slides387

Lab 15

a
"eeNFERINGE Arrays of Structures

Solution: Steps 1 and 2

S A A R R T R
STEP 1: Multiply the real (re) part of each array element by 10
HINT: Use *=
HHH R R R T R R T R R R R R R
//Multiply re part of current array element by 10

x[i].re *= 10;

/R R R R R T R R T R R R T
STEP 2: Multiply the imaginary (im) part of each array element by 5
HINT: Use *=
HHHHH R HHBHHH R R R R R R R R R R R A R R R R R/
//Multiply im part of current array element by 5

x[1i] .im *= 5;

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& " g - Slides388

ﬁ\ Lab 15

MASTERS -
CONFERENGE Conclusions

m Arrays of structures allow groups of
related structures to be referenced by a
common name

m Individual structures may be referenced by
the array index

m Individual structure members may be
referenced by the dot notation, in
conjunction with the array name and index

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg389

ROIL10101010

>>>>>>z_ga_>>>>>m N

YOU + MICROCHIP ENGINEERING THE FUTURE TOGETHER

Section 1.16
Unions

© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL

@ Unions

NVASTE
CONFERENCE

Definition

Unions are similar to structures but a union’s members all
share the same memory location. In essence a union is a

variable that is capable of holding different types of data at
different times.

= Unions:
= May contain any number of members
= Members may be of any data type
m Are as large as their largest member

m Use exactly the same syntax as structures
except struct is replaced with union

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CP& 5& = Slides391

@ Unions

R
Ndranince How to Create a Union

union unionName

{
type, memberName, ;

type, memberName,_:;

}

Example

// Union of char, int and float
union mixedBag
{
char a;
int b;
float c;
}

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slides392

@ Unions

NRTINer How to Create a Union Type with typedef

typedef union unionTag,,tional
{

type, memberName, ;

type, memberName,_:;
} typeName;

Example

// Union of char, int and float
typedef union
{
char a;
int b;
float c;
} mixedBag;

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slides393

@ Unions

Nonrininos How Unions Are Stored In Memory

= Union variables may be declared exactly
like structure variables

= Memory is only allocated to accommodate
the union’s largest member

Example

typedef union Space allocated 16-bit Data Memory (RAM)

{ for x is size of

Shar A float
int b;

float c;
} mixedBag;

mixedBag x;

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg394

@ Unions

Nonrininos How Unions Are Stored In Memory

= Union variables may be declared exactly
like structure variables

= Memory is only allocated to accommodate
the union’s largest member

Example

typedef union x . a only 16-bit Data Memory (RAM)
{

char a;

occupies the

int b lowest byte of

float c: the union X

} mixedBag;

mixedBag x;

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg395

@ Unions

Nonrininos How Unions Are Stored In Memory

= Union variables may be declared exactly
like structure variables

= Memory is only allocated to accommodate
the union’s largest member

Example

typedef union x.b only 16-bit Data Memory (RAM)
{

char a;

occupies the

int b lowest two

float c: bytes of the
} mixedBag; union

mixedBag x;

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg396

@ Unions

Nonrininos How Unions Are Stored In Memory

= Union variables may be declared exactly
like structure variables

= Memory is only allocated to accommodate
the union’s largest member

Example

typedef union X . C occupies 16-bit Data Memory (RAM)
{
char a;
int b;
float c;
} mixedBag;

all four bytes of
the union

mixedBag x;

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slides397

e\ o

NVASTE
CONFERENCE

© 2008 I\/IicrocQLip Technology Incorporated. All Rights Reserved. 1224 CP* i

Slidey398

A\ Lab 16

VASTERS Unions

= Open the project’s workspace:
. On the lab PC
C:\RTC\101_ECP\Lab16\Lab16.mcw

ST @) Open MPLAB® IDE and select Open
5@ Edit View Project Debudg Workspace from the Flle menu.
Open the file listed above.

If you already have a project open in
MPLAB IDE, close it by selecting

Close Workspace from the File menu
before opening a new one.

Save Workspace

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slides399

Lab 16

VASTERS Unions

Solution: Steps 1 and 2

/T HHH R R R AR R
STEP 1: Set the int member of unionVar equal to 16877.
HHHH TR R R R R A R R R R A R R R R A R R R R R/
//Set IntVar = 16877

unionVar.intVar = 16877;

[HEHHHHH R R R R R R R R R R
STEP 2: Set the float member of unionVar equal to 6.02e23.
HHHHHHHH R R R R R R R R R R R)
//Set floatvVar = 6.02e23

unionVar.floatVar = 6.02e23;

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& " g - Slides400

R\ Lab 16

MASTERS -
CONFERENGE Conclusions

= Unions make it possible to store multiple
variables at the same location

= They make it possible to access those
variables in different ways

= They make it possible to store different
variable types in the same memory
location(s)

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg401

-

J],_, ochif Jm ng

.J_.JJ /

= --.r gL ’0101C|1

>>>>>>z_ga_>>>>>m N

YOU + MICROCHIP ENGINEERING THE FUTURE TOGETHER

Section 1.17
Bit Fields

© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL

ﬁ&n Bit Fields

CONFERENCE

Definition

Bit Fields are unsigned int members of structures that

occupy a specified number of adjacent bits from one to
sizeof (int). They may be used as an ordinary int

variable in arithmetic and logical operations.

= Bit Fields:

= Are ordinary members of a structure
= Have a specified bit width

= Are often used in conjunction with unions to
provide bit access to a variable without
masking operations

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& Slides403

i

R\ Bit Fields

qE
Ndranince How to Create a Bit Field

struct structName

{
unsigned int memberName,: bitWidth;

unsigned int memberName, : bitWidth;

typedef struct

{
unsigned int bit0O: 1;
unsigned int bitlto3: 3; bitfield struct
unsigned int bit4: 1; may be declared
unsigned int bit5: 1; normally or as a
unsigned int bit6to7: 2; typedef

} byteBits;

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP,IT b Slides404

2\ Bit Fields

=1
TeNrEntNoE How to Use a Bit Field

struct byteBits .
{ Byte in Data Memory (RAM)

- 1

unsigned a: 1
unsigned b: 1
unsigned c: 2;
1
3

unsigned d:
unsigned e:
box;

.
14

int main (void)

{
contain
contain
contain
contain
contain

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 CPL . Slideg405

45\

NVASTE
CONFERENCE

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slides406

A\ Lab 17

NASTERS Bit Fields

= Open the project’s workspace:
. On the lab PC
C:\RTC\101_ECP\Lab17\Lab17.mcw

ST @) Open MPLAB® IDE and select Open
5@ Edit View Project Debudg Workspace from the Flle menu.
Open the file listed above.

If you already have a project open in
MPLAB IDE, close it by selecting

Close Workspace from the File menu
before opening a new one.

Save Workspace

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slidesd07

@ Lab 17-

NASTERS Bit Fields

= Compile and run the code:

© Compile (Build All) € Run @ Halt

s Test - MPLAB IDE v7.51 - [MPLAB IDE Editor]
] File Edit View Project Debugger Programmer Tools Configure Window Help

O = S odh R 7 Release v o' & o =5 0x53938 ‘ L [T Eli |

€) Click on the Build Al button.

If no errors are reported,
click on the Run button.

0 Click on the Halt button.

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& Slides408

Lab 17

NASTERS Bit Fields

Bit Field Definition

char fullByte;

struct {
int bitO0:
int bitl:
int bit2:
int bit3:
int bit4:
int bith:
int bité:
int bit7:

} bitField;

} bitByte;

Ne N

. Ne

Ne Neo o

RFR R R RERRRR

~e

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CP:iT Slides409

Lab 17

NASTERS Bit Fields

Demo Results 1

Add SFR| [ADTCHS s | [Add Symbel) | __ 5P

2ddress | Symbol Hame Value

agaa = bitByte

a2aa0 fullByte Ox55
2800 = kitFiel Ox0055
agaa bitd anol
a2aa0 kitl aaan
agaao Bit2 aool
agaa bit3 aoao
0300 kitd aonil
agaao kBith aaan
agaa bita anol
a2aa0 bit? aaan

bitByte.fullByte = 0x55;

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP:iT B - Slides410

Lab 17

NASTERS Bit Fields

Demo Results 2

2ddress | Symbol MName Value

agao =l BitByte

agaao fullByte Ox5d
QEa00 = kitFiel Ox0054
agaa0 bitd aaaa
QEaa kitl aaao
QEa00 kBit2 aaol
2200 kBit3 aaao
QEaa bitd aaoil
QEa00 kith aaaoo
2200 kita aaol
QEaa bit?7 aaao

bitByte.bitField.bit0

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP:iT B - Slidesd11

Lab 17

NASTERS Bit Fields

Demo Results 3

2ddress | Symbol MName Value

agao =l BitByte

agaao fullByte Ox50
agaao = bBitFiel 0x0050
2200 kitd aaao
QEaa kitl aaao
agaao bitZ aaaa
2200 kBit3 aaao
QEaa bitd aaoil
QEa00 kith aaaoo
2200 kita aaol
QEaa bit?7 aaao

bitByte.bitField.bit2

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP:iT B - Slidesd12

NVASTE
CONFERENCE

Add SFR

Lab 17

Bit Fields

Demo Results 4

ADTCHS » | [Add Spmbel) | _ 5P

W

2ddress

Symbol Mame

Value

as00
aga0ao
agaa
ag0a0
aga0ao
agaa
ag0a0
aga0ao
agaa
ag0a0
aga0ao

=l BitByte

fullByte

= bBitFiel
bBit0
Bitl
bBitz
bBit3
bBitd
bBith
bBite
Bit7

0xD0
Q0000
aaaona
aaona
aaaa
aaaona
0aol
aaaa
0aol

ool

bitByte.bitField.bit7

© 2008 Microéhip Technology Incorporated. All Rights Reserved.

1224 CPi;I_

Slideg413

ﬁ\ Lab 17

MASTERS -
CONFERENGE Conclusions

= Bit fields provide an efficient mechanism
to store Boolean values, flags and
semaphores in data memory

m Care must be used if code size or speed is
a concern

= Compiler will usually make use of bit set / bit
clear instructions

= In some circumstances this isn't possible
(comparing bit values)

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg414

s
o -
\ .‘/

aic n:hl Jju ng p

._ ___1_ JI__ 8

= ﬂ =

“RENCE ' 0
MR 11)1010

22> >>>>;gg>>>>m \

YOU + MICROCHIP ENGINEERING THE FUTURE TEEETHEH

Section 1.18
Enumerations

© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL

.;,QE.. Enumerations

CONPERENOE

Definition

Enumerations are integer data types that you can create
with a limited range of values. Each value is represented by

a symbolic constant that may be used in conjunction with
variables of the same enumerated type.

= Enumerations:
= Are unique integer data types
= May only contain a specified list of values
m Values are specified as symbolic constants

© 2008 I\/Iicroch._ip Technology Incorporated. All Rights Reserved. 1224 CP& 5& = Slidesd16

@ Enumerations

¥
Rttt How to Create an Enumeration Type

m Creates an ordered list of constants

m Each label’s value is one greater than the
previous label

enum typeName {label,, label,, .., 1abel_}

Where compiler sets label =0, label, =1, label =n

enum weekday {SUN, MON, TUE, WED, THR, FRI, SAT};

Label Values:
SUN=0,MON=1, TUE=2, WED=3, THR=4 ,FRI =5, SAT =6

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP_JT 9 Slidesd17

@ Enumerations

¥
Rttt How to Create an Enumeration Type

= Any label may be assignhed a specific value

= The following labels will increment from
that value

enum typeName {label, = const,,.., label_}

Where compiler sets label, = const,, label, = (const, + 1), ...

enum people {Rob, Steve, Paul = 7, Bill, Gary};

Label Values:
Rob =0, Steve =1, Paul = /,Bill =8, Gary = 9

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP_JT 9 Slides418

ﬂ Enumerations

m
o RNE How to Declare an Enumeration Type Variable

m Declared along with type:

enum typeName {const-list} varname,,..;

Syntax

enum typeName varName,,..,varName,_;

enum weekday {SUN, MON, TUE, WED, THR, FRI, SAT} today;

enum weekday someday; //day is a variable of type weekday

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slides419

@ Enumerations

MASTERS - .
conremEnet How to Declare a ‘Tagless’ Enumeration Variable

= No type name specified:

enum {const-list} varName,,..,varName_;

m Only variables specified as part of the enum
declaration may be of that type

= No type name is available to declare additional
variables of the enum type later in code

enum {SUN, MON, TUE, WED, THR, FRI, SAT} today;

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slides420

@ Enumerations

VRIS How to Declare an Enumeration Type with typedef

= Variables may be declared as type typeName
without needing the enum keyword

Syntax

typedef enum {const-list} typeName;

= The enumeration may now be used as an
ordinary data type (compatible with int)

typedef enum {SUN, MON, TUE, WED, THR, FRI, SAT} weekday;

weekday day; //Variable of type weekday

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP_JT 9 Slidesd21

@ Enumerations

ASTERE
ConR RN How to Use an Enumeration Type Variable
If enumeration and variable have already been defined:

Syntax

varName = label_;

m The labels may be used as any other symbolic constant

m Variables defined as enumeration types must be used in
conjunction with the type’s labels or equivalent integer

Example

enum weekday {SUN, MON, TUE, WED, THR, FRI, SAT};
enum weekday day;

day
day - //May only use values from 0 to 6

if (day == WED)
{ .

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPL Slidewnd22

45\

NVASTE
CONFERENCE

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slidesn423

A\ Lab 18

Amnﬂ .
CONFERENOE Enumerations

= Open the project’s workspace:
. On the lab PC
C:\RTC\101_ECP\Lab18\Lab18.mcw

ST @) Open MPLAB® IDE and select Open
5@ Edit View Project Debudg Workspace from the Flle menu.
Open the file listed above.

If you already have a project open in
MPLAB IDE, close it by selecting

Close Workspace from the File menu
before opening a new one.

Save Workspace

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Slidewnd24

B Lab 18

AB'I'EHE .
CONFERENOE Enumerations

= Compile and run the code:

© Compile (Build All) € Run @ Halt

s Test - MPLAB IDE v7.51 - [MPLAB IDE Editor]
] File Edit View Project Debugger Programmer Tools Configure Window Help

O = S odh R 7 Release v o' & o =5 0x53938 ‘ L [T Eli |

€) Click on the Build Al button.

If no errors are reported,
click on the Run button.

0 Click on the Halt button.

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& Slides425

Lab 18

As'rsﬂﬂ .
CONFERENOE Enumerations

Enum Definition and Use

typedef enum {BANDSTOP, LOWPASS, HIGHPASS, BANDPASS} filterTypes;

filterTypes filter;

int main (void)

{
filter = BANDPASS;

switch (filter)

{

case BANDSTOP: BandStopFilter();
case LOWPASS: LowPassFilter();
case HIGHPASS: HighPassFilter();
case BANDPASS: BandPassFilter() ;

}

while (1) ;

© 2008 I\/Iicrochlip Technology Incorporated. All Rights Reserved. 1224 CF’,-JT Slides426

R\ Lab 18

MASTERS -
CONFERENGE Conclusions

= Enumerations provide a means of
associating a list of constants with one or
more variables

m Make code easier to read and maintain

m Variables declared as enum are essentially
still int types

© 2008 Micro@hip Technology Incorporated. All Rights Reserved. 1224 Crg Slideg427

s
o -
> .‘/

\

J],_, n:hl ,.u.u ng

—
BRI 0101010

22> >>>>;gg>>>>m \

YOU + MICROCHIP ENGINEERING THE FUTURE TEEETHEH

Section 1.19
Macros with #

© 2008 Microchip Technology Incorporated. All Rights Reserved. 1224 CPL

..;,&., Macros with #define

CONFERENCE

Definition

Macros are text replacements created with #define that
Insert code into your program. Macros may take parameters

like a function, but the macro code and parameters are
always inserted into code by text substitution.

m Macros
= Are evaluated by the preprocessor
= Are not executable code themselves

m Can control the generation of code before the
compilation process

= Provide shortcuts

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& Slidewn429

i

ﬂ\ Macros with #define

Sty Simple Macros

m Text substitution as seen earlier
Syntax

#define label text

m Every instance of label in the current file will be
replaced by text

m text can be anything you can type into your editor
m Arithmetic expressions evaluated at compile time

Example

#define Fosc 4000000
#define Tcy (0.25 * (1/Fosc))

#define Setup InitSystem(Fosc, 250, 0x5A)

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT Slides430

ﬂ\ Macros with #define

ARG Argument Macros

m Create a function-like macro

m The code must fit on a single line or use *\' to split lines
m Text substitution used to insert arguments into code
m Each instance of label () will be expanded into code
m This is not the same as a C function!

Example

#define min(x, y) ((x)<(y)?(x):(y))
#define square(x) ((x)*(x))

#define swap(x, y) { x "= y; yv *=x; x *=y; }

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slides4d31

ﬁ\ Macros with #define

NYRTIer Argument Macros — Side Effects

#define square(a) ((a)*(a))

Extreme care must be exercised when using macros.
Consider the following use of the above macro:
i=25;

X square (1++) ;

& Wrong Answers!
x=30 % X = square (i++);
1=7 X expands to:

Results:

x = ((1i++)*(i++4));

So i gets incremented twice, not
once at the end as expected.

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CPL Slidewn432

45\

NVASTE
CONFERENCE

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPMIT b Slides433

A\ Lab 19

MASTERS i
CONFERENOR #define Macros

= Open the project’s workspace:
. On the lab PC
C:\RTC\101_ECP\Lab19\Lab19.mcw

ST @) Open MPLAB® IDE and select Open
5@ Edit View Project Debudg Workspace from the Flle menu.
Open the file listed above.

If you already have a project open in
MPLAB IDE close it by selecting

Close Workspace from the File menu
before opening a new one.

Save Workspace

© 2008 l\/Iicrochjp Technology Incorporated. All Rights Reserved. 1224 CF’,_tT .‘\-:\ Sliden434

B Lab 19

MASTERS :
CONFERENCE #define Macros

= Compile and run the code:

© Compile (Build All) € Run @ Halt

s Test - MPLAB IDE v7.51 - [MPLAB IDE Editor]
] File Edit View Project Debugger Programmer Tools Configure Window Help

O = S odh R 7 Release v o' & o =5 0x53938 ‘ L [T Eli |

€) Click on the Build Al button.

If no errors are reported,
click on the Run button.

0 Click on the Halt button.

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP& Slides435

A\ Lab 19

MASTERS :
CONFERENCE #define Macros

#define Macro Definition and Use

#define square(m) ((m) * (m))
#define BaudRate (DesiredBR, FoscMHz) ((((FoscMHz * 1000000) /DesiredBR)/64)-1)

int main (void)

{
X = square(3);
printf("x = %d\n", x);

SPBRG = BaudRate (9600, 16) ;
printf ("SPBRG = %d\n", SPBRG) ;

© 2008 I\/Iicroctlip Technology Incorporated. All Rights Reserved. 1224 CP:iT :3*; - Slides436

R\ Lab 19

MASTERS -
CONFERENGE Conclusions

= #define macros can dramatically simplify
your code and make it easier to maintain

= Extreme care must be taken when crafting
a macro due to the way they are
substituted within the text of your code

© 2008 Micro8gip Technology Incorporated. All Rights Reserved. 1224 CP4 " Slideg437

@ Resources

=i
YdNrininos A Selection of C Compilers

Microchip Technology MPLAB® C30 and MPLAB® C18
(Free 'student’ versions available)
http://www.microchip.com

Hi-Tech PICC™_ PICC-18™, C for dsPIC®/PIC24
http://www.htsoft.com

Custom Computer Services Inc. (CCS) C Compilers
http://www.ccsinfo.com

ByteCraft Ltd. MPC
http://www.bytecraft.com

IAR Systems Embedded Workbench
http://www.iar.com

Small Device C Compiler (Free)
http://sourceforge.net/projects/sdcc/

SourceBoost BoostC™
http://www.sourceboost.com/

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CPg

Slideg438

@ Resources

MASTERE
SSNAEEIES Books — General C Language
— | ® The C Programming Language
J&»\G 2nd Edition (March 22, 1988)
SROERAMMING Brian W. Kernighan & Dennis Ritchie
=BG ISBN-10: 0131103628
ISBN-13: 978-0131103627

m SAMS Teach Yourself C in 21 Days
6t Edition (September 25, 2002)
Bradley L. Jones & Peter Aitken
ISBN-10: 0672324482
ISBN-13: 978-0672324482

= Beginning C From Novice to Professional
4th Edition (October 19, 2006)
Ivor Horton
ISBN-10: 1590597354

....... ISBN-13: 978-1590597354

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP_JT 9 Slidewn439

ﬂ Resources

al
denraninos Books — General C Language

- ® Programming Embedded Systems
s with C and GNU Development Tools
2nd Edition (October 1, 2006)
O Michael Barr & Anthony Massa
ISBN-10: 0596009836
ISBN-13: 978-0596009830

Practical C Programming
3rd Edition (August 1, 1997)

Steve Oualline

ISBN-10: 1565923065

ISBN-13: 978-1565923065

Code Complete
2nd Edition (June 2004)
Steve McConnell
ISBN-10: 0735619670 must read for all
ISBN-13: 978-0735619678 software engineers

Not about C
specifically, but a

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CP,_t: 31 : Slides440

N

NVASTE
CONFERENCE

Resources
Books — PIC® MCU Specific

7, " Programming 16-Bit PIC Microcontrollers in C

Learning to Fly the PIC24

© 2008 Microéhip Technology Incorporated. All Rights Reserved. 1224 CP:iT

1st Edition (March 16, 2007)
Lucio Di Jasio

ISBN-10: 0750682922
ISBN-13: 978-0750682923

Embedded C Programming and the Microchip PIC
1st Edition (November 3, 2003)

Richard H. Barnett, Sarah Cox, Larry O'Cull

ISBN-10: 1401837484

ISBN-13: 978-1401837488

PICmicro MCU C:

An Introduction to Programming the Microchip PIC in CCS C
2nd Edition (August 19, 2002)

Nigel Gardner

ISBN-10: 0972418105

ISBN-13: 978-0972418102

Slideg441

@ Resources

]
NonraREnos Books — Compiler Specific

= MPLAB® C30 C Compiler User's Guide
Current Edition (PDF)
MPLAB® C30 Microchip Technology

Compiler

User’s Guide D851 284F

I http://Iwww.microchip.com
—— m MPLAB® ASM30 LINK30 and Utilities User's Guide
Current Edition (PDF)
MPLAB? ASM30, Microchip Technology
User's Guice DS51317F
— http://www.microchip.com

=% m The Definitive Guide to GCC

2nd Edition (August 11, 2006) MPLAB® C30 is
William von Hagen based on the
ISBN-10: 1590595858 GCC tool chain

ISBN-13: 978-1590595855

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP,IT b Slidesd42

@ Resources

]
NonraREnos Books — Compiler Specific

= MPLAB® C18 C Compiler User's Guide
Current Edition (PDF)
MPLAB® C18 Microchip Technology

Compiler

User’s Guide D851 288J
http://www.microchip.com

—

e g MPASM™ MPLINK™ and MPLIB™ User's Guide
Current Edition (PDF)

MPASM™ Microchip Technology

MPLINK™

MPLIB™ DS33014J

User’s Guide

I http://www.microchip.com

programming since they were written back when PCs and other computers
had limited resources and programmers had to manage them carefully.

@ The older books on C are much more relevant to embedded C

© 2008 Micro&hip Technology Incorporated. All Rights Reserved. 1224 CP,IT b Slidesnd43

ASTE
CONFERENCE

Thank youl!

© 2008 Microhip Technology Incorporated. All Rights Reserved. 1224 CP_L Slidesd44

M&ﬂ Trademarks

The Microchip name and Iog,g), the Microchip logo, Accuron, dsPIC, KeelLoq,
KeelLog logo, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, rfPIC and _
SmartShunt are registered trademarks of Microchip Technology Incorporated in
the U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and
The Embedded Control Solutions Company are registered trademarks of
Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM,
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense,
In-Circuit Serial Pro%rammln , ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM, PICDEM.net, PICtalil,
PIC32 logo, PowerCal, Powerlnfo, PowerMate, PowerTool, REAL ICE, rfLAB,
Select Mode, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
All other trademarks mentioned herein are property of their respective companies.
© 2008, Microchip Technology Incorporated. All Rights Reserved.

© 2008 Microghip Technology Incorporated. All Rights Reserved. 1224 CPL . Slideg445

